Skip to main content
Log in

Measuring attention to reward as an individual trait: the value-driven attention questionnaire (VDAQ)

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Reward history is a powerful determinant of what we pay attention to. This influence of reward on attention varies substantially across individuals, being related to a variety of personality variables and clinical conditions. Currently, the ability to measure and quantify attention-to-reward is restricted to the use of psychophysical laboratory tasks, which limits research into the construct in a variety of ways. In the present study, we introduce a questionnaire designed to provide a brief and accessible means of assessing attention-to-reward. Scores on the questionnaire correlate with other measures known to be related to attention-to-reward and predict performance on multiple laboratory tasks measuring the construct. In demonstrating this relationship, we also provide evidence that attention-to-reward as measured in the lab, an automatic and implicit bias in information processing, is related to overt behaviors and motivations in everyday life as assessed via the questionnaire. Variation in scores on the questionnaire is additionally associated with a distinct biomarker in brain connectivity, and the questionnaire exhibits acceptable test–retest reliability. Overall, the Value-Driven Attention Questionnaire (VDAQ) provides a useful proxy-measure of attention-to-reward that is much more accessible than typical laboratory assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertella, L., Copeland, D., Pearson, D., Watson, P., Wiers, R. W., & Le Pelley, M. E. (2017). Selective attention moderates the relationship between attentional capture by signals of nondrug reward and illicit drug use. Drug and Alcohol Dependence, 175, 99–105.

    PubMed  Google Scholar 

  • Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1–16.

    Google Scholar 

  • Anderson, B. A. (2015a). Value-driven attentional capture is modulated by spatial context. Visual Cognition, 23, 67–81.

    PubMed  Google Scholar 

  • Anderson, B. A. (2015b). Value-driven attentional priority is context specific. Psychonomic Bulletin and Review, 22, 750–756.

    PubMed  Google Scholar 

  • Anderson, B. A. (2016a). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369, 24–39.

    PubMed  Google Scholar 

  • Anderson, B. A. (2016b). What is abnormal about addiction-related attentional biases? Drug and Alcohol Dependence, 167, 8–14.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A. (2017a). Going for it: The economics of automaticity in perception and action. Current Directions in Psychological Science, 26, 140–145.

    Google Scholar 

  • Anderson, B. A. (2017b). Reward processing in the value-driven attention network: Reward signals tracking cue identity and location. Social, Cognitive, and Affective Neuroscience, 12, 461–467.

    Google Scholar 

  • Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.

    PubMed  Google Scholar 

  • Anderson, B. A., & Britton, M. K. (2019). On the automaticity of attentional orienting to threatening stimuli. Emotion. https://doi.org/10.1037/emo0000596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A., Chiu, M., DiBartolo, M. M., & Leal, S. L. (2017a). On the distinction between value-driven attention and selection history: Evidence from individuals with depressive symptoms. Psychonomic Bulletin & Review, 24, 1636–1642.

    Google Scholar 

  • Anderson, B. A., Faulkner, M. L., Rilee, J. J., Yantis, S., & Marvel, C. L. (2013a). Attentional bias for non-drug reward is magnified in addiction. Experimental and Clinical Psychopharmacology, 21, 499–506.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A., Folk, C. L., Garrison, R., & Rogers, L. (2016a). Mechanisms of habitual approach: Failure to suppress irrelevant responses evoked by previously reward-associated stimuli. Journal of Experimental Psychology: General, 145, 796–805.

    Google Scholar 

  • Anderson, B. A., & Kim, H. (2018a). Mechanisms of value-learning in the guidance of spatial attention. Cognition, 178, 26–36.

    PubMed  Google Scholar 

  • Anderson, B. A., & Kim, H. (2018b). Relating attentional biases for stimuli associated with social reward and punishment to autistic traits. Collabra Psychology, 4(1), 10.

    Google Scholar 

  • Anderson, B. A., & Kim, H. (2019a). On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, and Psychophysics, 81, 607–613.

    Google Scholar 

  • Anderson, B. A., & Kim, H. (2019b). Test-retest reliability of value-driven attentional capture. Behavior Research Methods, 51(2), 720–726.

    PubMed  Google Scholar 

  • Anderson, B. A., Kronemer, S. I., Rilee, J. J., Sacktor, N., & Marvel, C. L. (2016b). Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease, 92, 157–165.

    PubMed  Google Scholar 

  • Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brasic, J. R., … Yantis, S. (2016c). The role of dopamine in value-based attentional orienting. Current Biology, 26, 550–555.

    PubMed  Google Scholar 

  • Anderson, B. A., Kuwabara, H., Wong, D. F., Roberts, J., Rahmim, A., Brasic, J. R., & Courtney, S. M. (2017b). Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. NeuroImage, 157, 27–33.

    PubMed  Google Scholar 

  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS ONE, 6, e27926.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences USA, 108, 10367–10371.

    Google Scholar 

  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2013b). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7, 262.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2014a). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, B. A., Leal, S. L., Hall, M. G., Yassa, M. A., & Yantis, S. (2014b). The attribution of value-based attentional priority in individuals with depressive symptoms. Cognitive, Affective, and Behavioral Neuroscience, 14, 1221–1227.

    Google Scholar 

  • Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, and Psychophysics, 74, 1644–1653.

    Google Scholar 

  • Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39, 6–9.

    PubMed  Google Scholar 

  • Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubly, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.

    PubMed  Google Scholar 

  • Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 1124–1143.

    PubMed  Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71, 670–679.

    PubMed  Google Scholar 

  • Bourgeois, A., Chelazzi, L., & Vuilleumier, P. (2016). How motivation and reward learning modulate selective attention. Progress in Brain Research, 229, 325–342.

    PubMed  Google Scholar 

  • Bourgeois, A., Neveu, R., Bayle, D. J., & Vuilleumier, P. (2017). How does reward compete with goal-directed and stimulus-driven shifts of attention? Cognition and Emotion, 31, 109–118.

    PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    PubMed  Google Scholar 

  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333.

    Google Scholar 

  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    PubMed  Google Scholar 

  • De Tommaso, M., Mastropasqua, T., & Turatto, M. (2017). The salience of a reward cue can outlast reward devaluation. Behavioral Neuroscience, 131, 226–234.

    PubMed  Google Scholar 

  • Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20, 778–784.

    PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    PubMed  Google Scholar 

  • Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 25, 514–538.

    PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attention networks. NeuroImage, 26, 471–479.

    PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficacy and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.

    PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    PubMed  Google Scholar 

  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30, 11096–11103.

    PubMed  Google Scholar 

  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010b). Reward guides vision when it’s your thing: Trait reward-seeking in reward-mediated visual priming. PLoS ONE, 5, e14087.

    PubMed  PubMed Central  Google Scholar 

  • Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85, 512–518.

    PubMed  Google Scholar 

  • Hickey, C., & Peelen, M. V. (2017). Reward selectively modulates the lingering neural representation of recently attended objects in natural scenes. Journal of Neuroscience, 37, 7297–7304.

    PubMed  Google Scholar 

  • Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences USA, 107, 8871–8876.

    Google Scholar 

  • Kim, A. J., & Anderson, B. A. (2019a). Neural correlates of attentional capture by stimuli previously associated with social reward. Cognitive Neuroscience.. https://doi.org/10.1093/scan/nsw141.

    Article  PubMed  Google Scholar 

  • Kim, H., & Anderson, B. A. (2019b). Neural evidence for automatic value-modulated approach behavior. NeuroImage, 189, 150–158.

    PubMed  Google Scholar 

  • Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20, 245–251.

    PubMed  Google Scholar 

  • Leganes-Fonteneau, M., Scott, R., & Duka, T. (2018). Attentional responses to stimuli associated with a reward can occur in the absence of knowledge of their predictive values. Behavioural Brain Research, 341, 26–36.

    PubMed  Google Scholar 

  • Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.

    Google Scholar 

  • Murty, V. P., Labar, K. S., & Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32, 8969–8976.

    PubMed  Google Scholar 

  • Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual search. Journal of Vision, 9(1), 1–16.

    PubMed  Google Scholar 

  • Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences, USA, 107, 5232–5237.

    Google Scholar 

  • O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–776.

    PubMed  Google Scholar 

  • Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768–774.

    PubMed  Google Scholar 

  • Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers Neuroscience, 4(17), 1–8.

    Google Scholar 

  • Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2014). Where is the chocolate? Rapid spatial orienting toward stimuli associated with primary rewards. Cognition, 130, 348–359.

    PubMed  Google Scholar 

  • Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43.

    PubMed  Google Scholar 

  • Raymond, J. E., & O’Brien, J. L. (2009). Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychological Science, 20, 981–988.

    PubMed  Google Scholar 

  • Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.

    Google Scholar 

  • Sali, A. W., Anderson, B. A., & Yantis, S. (2014). The role of reward prediction in the control of attention. Journal of Experimental Psychology: Human Perception and Performance, 40, 1654–1664.

    PubMed  Google Scholar 

  • Sali, A. W., Anderson, B. A., Yantis, S., Mostofsky, S. H., & Rosch, K. S. (2018). Reduced value-driven attentional capture among children with ADHD compared to typically developing controls. Journal of Abnormal Child Psychology, 46, 1187–1200.

    PubMed  PubMed Central  Google Scholar 

  • Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.

    PubMed  Google Scholar 

  • Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31, 845–857.

    PubMed  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.

    PubMed  Google Scholar 

  • Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700–707.

    PubMed  PubMed Central  Google Scholar 

  • Serences, J. T. (2008). Value-based modulations in human visual cortex. Neuron, 60, 1169–1181.

    PubMed  PubMed Central  Google Scholar 

  • Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104, 76–87.

    PubMed  PubMed Central  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.

    Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599–606.

    PubMed  Google Scholar 

  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.

    PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.

    PubMed  Google Scholar 

  • van Koningsbruggen, M. G., Ficarella, S. C., Battelli, L., & Hickey, C. (2016). Transcranial random noise stimulation of visual cortex potentiates value-driven attentional capture. Social, Cognitive, and Affective Neuroscience, 11, 1481–1488.

    Google Scholar 

  • Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.

    PubMed  Google Scholar 

  • Wang, L., Yu, H., Hu, J., Theeuwes, J., Gong, X., Xiang, Y., … Zhou, X. (2015). Reward breaks through center-surround inhibition via anterior insula. Human Brain Mapping, 36, 5233–5251.

    PubMed  PubMed Central  Google Scholar 

  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433.

    PubMed  Google Scholar 

  • Yamamoto, S., Kim, H. F., & Hikosaka, O. (2013). Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. The Journal of Neuroscience, 33, 11227–11238.

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto, S., Monosov, I. E., Yasuda, M., & Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. The Journal of Neuroscience, 32, 11005–11016.

    PubMed  PubMed Central  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 350–374.

    Google Scholar 

  • Zhang, J.-T., Ma, S.-S., Yip, S. W., Wang, L.-J., Chen, C., Yan, C.-G., … Fang, X.-Y. (2015). Decreased functional connectivity between ventral tegmental area and nucleus accumbens in internet gaming disorder: Evidence from resting state functional magnetic resonance imaging. Behavioral and Brain Functions, 11(37), 1–7.

    Google Scholar 

Download references

Funding

This study was supported by grants from the Brain and Behavior Research Foundation [NARSAD 26008] and NIH [R01-DA046410] to BAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Anderson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures were conducted in accordance with the ethical standards of the Texas A&M University Institutional Review Board and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 2.

Table 2 The Value-Driven Attention Questionnaire (VDAQ)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B.A., Kim, H., Britton, M.K. et al. Measuring attention to reward as an individual trait: the value-driven attention questionnaire (VDAQ). Psychological Research 84, 2122–2137 (2020). https://doi.org/10.1007/s00426-019-01212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01212-3

Navigation