Skip to main content
Log in

Acoustofluidics for biomedical applications

  • Primer
  • Published:

From Nature Reviews Methods Primers

View current issue Sign up to alerts

Abstract

Acoustofluidic technologies utilize acoustic waves to manipulate fluids and particles within fluids, all in a contact-free and biocompatible manner. Over the past decade, acoustofluidic technologies have enabled new capabilities in biomedical applications ranging from the precise patterning of heterogeneous cells for tissue engineering to the automated isolation of extracellular vesicles from biofluids for rapid, point-of-care diagnostics. In this Primer, we explain the underlying physical principles governing the design and operation of acoustofluidic technologies and describe the various implementations that have been developed for biomedical applications. We aim to demystify the rapidly growing field of acoustofluidics and provide a unified perspective that will allow end users to choose the acoustofluidic technology that is best suited for their research needs. The experimental set-ups for each type of acoustofluidic device are discussed along with their advantages and limitations. In addition, we review typical types of data that are obtained from acoustofluidic experiments and describe how to model different forces acting on particles within an acoustofluidic device. We also discuss data reproducibility and the need to establish standards for the deposition of data sets within the field. Finally, we provide our perspective on how to optimize device performance and discuss areas of future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Typical configurations of acoustofluidic devices.
Fig. 2: Representative acoustofluidics results based on acoustic radiation forces.
Fig. 3: Representative acoustofluidics results based on acoustic streaming.
Fig. 4: Acoustofluidics for single-cell analysis.
Fig. 5: Acoustofluidics for point-of-care diagnostics.
Fig. 6: Acoustofluidics for the automation of workflows in biomedical laboratories.
Fig. 7: Acoustofluidics for tissue engineering.

Similar content being viewed by others

References

  1. Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011). This comprehensive review article provides a thorough overview of the underlying physics of acoustofluidic technologies, with a particular emphasis placed on wave generation and propagation in solids and fluids.

    ADS  Google Scholar 

  2. Bruus, H. et al. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011).

    Google Scholar 

  3. Zhang, P., Bachman, H., Ozcelik, A. & Huang, T. J. Acoustic microfluidics. Annu. Rev. Anal. Chem. 13, 17–43 (2020).

    Google Scholar 

  4. Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018). This review paper provides an introduction to the various applications of acoustic tweezer technologies in the life sciences.

    Google Scholar 

  5. Westervelt, P. J. The theory of steady forces caused by sound waves. J. Acoust. Soc. Am. 23, 312–315 (1951).

    ADS  MathSciNet  Google Scholar 

  6. Zhang, L. & Marston, P. L. Axial radiation force exerted by general non-diffracting beams. J. Acoust. Soc. Am. 131, EL329–EL335 (2012).

    ADS  Google Scholar 

  7. Zhang, L. From acoustic radiation pressure to three-dimensional acoustic radiation forces. J. Acoust. Soc. Am. 144, 443–447 (2018).

    ADS  Google Scholar 

  8. Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006).

    ADS  Google Scholar 

  9. Brillouin, L. Tensors in Mechanics and Elasticity (Academic, 1964).

  10. King, L. V. On the acoustic radiation pressure on spheres. Proc. R. Soc. London. Ser. A Mathem. Phys. Sci. 147, 212–240 (1934).

    ADS  Google Scholar 

  11. Yosioka, K. & Kawasima, Y. Acoustic radiation pressure on a compressible sphere. Acta Acust. U Acust. 5, 167–173 (1955).

    Google Scholar 

  12. Wei, W., Thiessen, D. B. & Marston, P. L. Acoustic radiation force on a compressible cylinder in a standing wave. J. Acoust. Soc. Am. 116, 201–208 (2004).

    ADS  Google Scholar 

  13. Sapozhnikov, O. A. & Bailey, M. R. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 133, 661–676 (2013).

    ADS  Google Scholar 

  14. Doinikov, A. A. Acoustic radiation pressure on a compressible sphere in a viscous fluid. J. Fluid Mech. 267, 1–22 (1994).

    ADS  MathSciNet  MATH  Google Scholar 

  15. Doinikov, A. A. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula. J. Acoust. Soc. Am. 101, 713–721 (1997).

    ADS  Google Scholar 

  16. Marston, P. L. & Zhang, L. Unphysical consequences of negative absorbed power in linear passive scattering: implications for radiation force and torque. J. Acoust. Soc. Am. 139, 3139–3144 (2016).

    ADS  Google Scholar 

  17. Zhang, L. & Marston, P. L. Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections. J. Acoust. Soc. Am. 140, EL178–EL183 (2016).

    ADS  Google Scholar 

  18. Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E 84, 065601 (2011).

    ADS  Google Scholar 

  19. Silva, G. T. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid. J. Acoust. Soc. Am. 136, 2405–2413 (2014).

    ADS  Google Scholar 

  20. Zhang, L. & Marston, P. L. Acoustic radiation torque on small objects in viscous fluids and connection with viscous dissipation. J. Acoust. Soc. Am. 136, 2917–2921 (2014).

    ADS  Google Scholar 

  21. Karlsen, J. T. & Bruus, H. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E 92, 043010 (2015).

    ADS  Google Scholar 

  22. Muller, P. B. & Bruus, H. Theoretical aspects of microchannel acoustofluidics: thermoviscous corrections to the radiation force and streaming. Procedia IUTAM 10, 410–415 (2014).

    Google Scholar 

  23. Zhang, L. & Marston, P. L. Acoustic radiation torque and the conservation of angular momentum (L). J. Acoust. Soc. Am. 129, 1679–1680 (2011).

    ADS  Google Scholar 

  24. Hahn, P., Lamprecht, A. & Dual, J. Numerical simulation of micro-particle rotation by the acoustic viscous torque. Lab Chip 16, 4581–4594 (2016).

    Google Scholar 

  25. Zhang, L. Reversals of orbital angular momentum transfer and radiation torque. Phys. Rev. Appl. 10, 034039 (2018).

    ADS  Google Scholar 

  26. Silva, G. T. An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront (L). J. Acoust. Soc. Am. 130, 3541–3544 (2011).

    ADS  Google Scholar 

  27. Mitri, F. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Ultrasonics 43, 681–691 (2005).

    Google Scholar 

  28. Hasegawa, T. & Yosioka, K. Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46, 1139–1143 (1969).

    ADS  MATH  Google Scholar 

  29. Hasegawa, T., Saka, K., Inoue, N. & Matsuzawa, K. Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field. J. Acoust. Soc. Am. 83, 1770–1775 (1988).

    ADS  Google Scholar 

  30. Gong, Z. & Baudoin, M. Equivalence between angular spectrum-based and multipole expansion-based formulas of the acoustic radiation force and torque. J. Acoust. Soc. Am. 149, 3469 (2021).

    ADS  Google Scholar 

  31. Cai, F., Meng, L., Jiang, C., Pan, Y. & Zheng, H. Computation of the acoustic radiation force using the finite-difference time-domain method. J. Acoust. Soc. Am. 128, 1617–1622 (2010).

    ADS  Google Scholar 

  32. Cosgrove, J. A., Buick, J. M., Campbell, D. M. & Greated, C. A. Numerical simulation of particle motion in an ultrasound field using the lattice Boltzmann model. Ultrasonics 43, 21–25 (2004).

    Google Scholar 

  33. Wijaya, F. B. & Lim, K.-M. Numerical calculation of acoustic radiation force and torque acting on rigid non-spherical particles. Acta Acust. United Acust. 101, 531–542 (2015).

    Google Scholar 

  34. Baasch, T., Pavlic, A. & Dual, J. Acoustic radiation force acting on a heavy particle in a standing wave can be dominated by the acoustic microstreaming. Phys. Rev. E 100, 061102 (2019).

    ADS  Google Scholar 

  35. Doinikov, A. A. Acoustic radiation interparticle forces in a compressible fluid. J. Fluid Mech. 444, 1–21 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Silva, G. T. & Bruus, H. Acoustic interaction forces between small particles in an ideal fluid. Phys. Rev. E 90, 063007 (2014).

    ADS  Google Scholar 

  37. Sepehrirhnama, S. & Lim, K.-M. Generalized potential theory for close-range acoustic interactions in the Rayleigh limit. Phys. Rev. E 102, 043307 (2020).

    ADS  Google Scholar 

  38. Bruus, H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12, 1014–1021 (2012).

    Google Scholar 

  39. Gor’kov, L. P. On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962).

    ADS  Google Scholar 

  40. Doinikov, A. A. Acoustic radiation forces: classical theory and recent advances. Recent. Res. Dev. Acoust. 1, 39–67 (2003).

    Google Scholar 

  41. Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

    ADS  Google Scholar 

  42. Jerome, T. S., Ilinskii, Y. A., Zabolotskaya, E. A. & Hamilton, M. F. Born approximation of acoustic radiation force and torque on soft objects of arbitrary shape. J. Acoust. Soc. Am. 145, 36–44 (2019).

    ADS  Google Scholar 

  43. Lighthill, J. Acoustic streaming. J. Sound. Vib. 61, 391–418 (1978).

    ADS  MATH  Google Scholar 

  44. Rayleigh, L. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1884).

    ADS  MATH  Google Scholar 

  45. Schlichting, H. Berechnung ebener periodischer Grenzschichtströmungen [Calculation of plane periodic boundary layer streaming]. Z. fur Physik. 33, 327–335 (1932).

    MATH  Google Scholar 

  46. Eckart, C. Vortices and streams caused by sound waves. Phys. Rev. 73, 68 (1948).

    ADS  MATH  Google Scholar 

  47. Nyborg, W. L. in Acoustic Streaming Vol. 2B Ch. 11 (eds Mason, W. P. & Thurston, R. N.) 265–329 (Academic, 1965).

  48. Orosco, J. & Friend, J. Unraveling the complex dynamics of acoustofluidics. Preprint at https://doi.org/10.48550/arXiv.2107.00172 (2021).

  49. Chu, B.-T. & Apfel, R. E. Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72, 1673–1687 (1982).

    ADS  Google Scholar 

  50. Bertelsen, A., Svardal, A. & Tjøtta, S. Nonlinear streaming effects associated with oscillating cylinders. J. Fluid Mech. 59, 493–511 (1973).

    ADS  MATH  Google Scholar 

  51. Vega, J. M., Rüdiger, S. & Viñals, J. Phenomenological model of weakly damped Faraday waves and the associated mean flow. Phys. Rev. E 70, 046306 (2004).

    ADS  MathSciNet  Google Scholar 

  52. Naugolnykh, K. & Ostrovsky, L. Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, 1998).

  53. Zhang, N., Horesh, A., Manor, O. & Friend, J. Powerful acoustogeometric streaming from dynamic geometric nonlinearity. Phys. Rev. Lett. 126, 164502 (2021).

    ADS  Google Scholar 

  54. Connacher, W., Orosco, J. & Friend, J. Droplet ejection at controlled angles via acoustofluidic jetting. Phys. Rev. Lett. 125, 184504 (2020).

    ADS  Google Scholar 

  55. Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111, 12992–12997 (2014).

    ADS  Google Scholar 

  56. Glynne-Jones, P. & Hill, M. Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip 13, 1003–1010 (2013).

    Google Scholar 

  57. Collins, D. J., Alan, T. & Neild, A. Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14, 1595–1603 (2014).

    Google Scholar 

  58. Wiklund, M. et al. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6, 1537–1544 (2006).

    Google Scholar 

  59. Thalhammer, G. et al. Combined acoustic and optical trapping. Biomed. Opt. Express 2, 2859–2870 (2011).

    Google Scholar 

  60. Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).

    Google Scholar 

  61. Akther, A., Marqus, S., Rezk, A. R. & Yeo, L. Y. Submicron particle and cell concentration in a closed chamber surface acoustic wave microcentrifuge. Anal. Chem. 92, 10024–10032 (2020).

    Google Scholar 

  62. Liu, S. et al. Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors 17, 1664 (2017).

    ADS  Google Scholar 

  63. Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).

    Google Scholar 

  64. Li, F. et al. Rapid acoustophoretic motion of microparticles manipulated by phononic crystals. Appl. Phys. Lett. 113, 173503 (2018).

    ADS  Google Scholar 

  65. Barnkob, R., Augustsson, P., Laurell, T. & Bruus, H. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 86, 056307 (2012).

    ADS  Google Scholar 

  66. Bruus, H. Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12, 1578–1586 (2012).

    Google Scholar 

  67. Barnkob, R., Augustsson, P., Laurell, T. & Bruus, H. Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip 10, 563–570 (2010).

    Google Scholar 

  68. Lenshof, A., Evander, M., Laurell, T. & Nilsson, J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12, 684–695 (2012).

    Google Scholar 

  69. Friend, J. & Yeo, L. Y.-M. in Encyclopedia of Microfluidics & Nanofluidics Vol. 1 (ed. Li, D.) 1654–1662 (Springer, 2008).

  70. Uchino, K. et al. Loss mechanisms and high power piezoelectrics. J. Mater. Sci. 41, 217–228 (2006).

    ADS  Google Scholar 

  71. Zipparo, M. J., Shung, K. K. & Shrout, T. R. Piezoceramics for high-frequency (20 to 100 MHz) single-element imaging transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1038–1048 (1997).

    Google Scholar 

  72. Zhou, Q., Lam, K. H., Zheng, H., Qiu, W. & Shung, K. K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014).

    Google Scholar 

  73. Steckel, A. G., Bruus, H., Muralt, P. & Matloub, R. Fabrication, characterization, and simulation of glass devices with AlN thin-film transducers for excitation of ultrasound resonances. Phys. Rev. Appl. 16, 014014 (2021).

    ADS  Google Scholar 

  74. Dual, J., Hahn, P., Leibacher, I., Möller, D. & Schwarz, T. Acoustofluidics 6: experimental characterization of ultrasonic particle manipulation devices. Lab Chip 12, 852–862 (2012).

    Google Scholar 

  75. Hawkes, J. J. & Radel, S. Acoustofluidics 22: multi-wavelength resonators, applications and considerations. Lab Chip 13, 610–627 (2013).

    Google Scholar 

  76. Rezk, A. R., Tan, J. K. & Yeo, L. Y. HYbriD Resonant Acoustics (HYDRA). Adv. Mater. 28, 1970–1975 (2016).

    Google Scholar 

  77. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). This study describes the use of 3D printed acoustic holograms to create complex, arbitrarily shaped acoustic fields that can be used to manipulate PDMS microspheres in water.

    ADS  Google Scholar 

  78. Pereno, V. et al. Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects. Biomicrofluidics 12, 034109 (2018).

    Google Scholar 

  79. Ozer, M. B. & Cetin, B. An extended view for acoustofluidic particle manipulation: scenarios for actuation modes and device resonance phenomenon for bulk-acoustic-wave devices. J. Acoust. Soc. Am. 149, 2802–2812 (2021).

    ADS  Google Scholar 

  80. Moiseyenko, R. P. & Bruus, H. Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices. Phys. Rev. Appl. 11, 014014 (2019).

    ADS  Google Scholar 

  81. Leibacher, I., Schatzer, S. & Dual, J. Impedance matched channel walls in acoustofluidic systems. Lab Chip 14, 463–470 (2014).

    Google Scholar 

  82. Barani, A., Mosaddegh, P., Haghjooy Javanmard, S., Sepehrirahnama, S. & Sanati-Nezhad, A. Numerical and experimental analysis of a hybrid material acoustophoretic device for manipulation of microparticles. Sci. Rep. 11, 22048 (2021).

    ADS  Google Scholar 

  83. Coakley, W. T., Bardsley, D. W., Grundy, M. A., Zamani, F. & Clarke, D. J. Cell manipulation in ultrasonic standing wave fields. J. Chem. Technol. Biotechnol. 44, 43–62 (1989).

    Google Scholar 

  84. Barmatz, M. & Collas, P. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J. Acoust. Soc. Am. 77, 928–945 (1985).

    ADS  MATH  Google Scholar 

  85. Xu, D. et al. Acoustic manipulation of particles in a cylindrical cavity: theoretical and experimental study on the effects of boundary conditions. Ultrasonics 93, 18–25 (2019).

    Google Scholar 

  86. Saito, M., Daian, T., Hayashi, K. & Izumida, S.-Y. Fabrication of a polymer composite with periodic structure by the use of ultrasonic waves. J. Appl. Phys. 83, 3490–3494 (1998).

    ADS  Google Scholar 

  87. Li, J., Shen, C., Huang, T. J. & Cummer, S. A. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides. Sci. Adv. 7, eabi5502 (2021).

    ADS  Google Scholar 

  88. Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991). This study presents the first demonstration of 3D particle trapping and movement using standing acoustic waves and is the namesake for acoustical tweezers.

    ADS  Google Scholar 

  89. Tian, L. et al. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat. Commun. 7, 13068 (2016).

    ADS  Google Scholar 

  90. Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109, 123506 (2016).

    ADS  Google Scholar 

  91. Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).

    ADS  Google Scholar 

  92. He, Z. et al. Acoustic transmission enhancement through a periodically structured stiff plate without any opening. Phys. Rev. Lett. 105, 074301 (2010).

    ADS  Google Scholar 

  93. Xia, X. et al. Three-dimensional spiral motion of microparticles by a binary-phase logarithmic-spiral zone plate. J. Acoust. Soc. Am. 150, 2401–2408 (2021).

    ADS  Google Scholar 

  94. Li, F. et al. Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force. Phys. Rev. Appl. 1, 051001 (2014).

    ADS  Google Scholar 

  95. Shen, Y.-X. et al. Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nat. Commun. 10, 3411 (2019).

    ADS  Google Scholar 

  96. Li, F. et al. Phononic-crystal-enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel. Phys. Rev. Appl. 13, 044077 (2020).

    ADS  Google Scholar 

  97. Bourquin, Y., Wilson, R., Zhang, Y., Reboud, J. & Cooper, J. M. Phononic crystals for shaping fluids. Adv. Mater. 23, 1458–1462 (2011).

    Google Scholar 

  98. Yang, Y. et al. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research 2021, 9781394 (2021).

    ADS  Google Scholar 

  99. Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 1–7 (2015).

    ADS  Google Scholar 

  100. Marzo, A. & Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl Acad. Sci. USA 116, 84–89 (2019).

    ADS  Google Scholar 

  101. Ma, Z. et al. Spatial ultrasound modulation by digitally controlling microbubble arrays. Nat. Commun. 11, 4537 (2020).

    ADS  Google Scholar 

  102. Wixforth, A. et al. Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379, 982–991 (2004).

    Google Scholar 

  103. Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

    Google Scholar 

  104. Destgeer, G. & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15, 2722–2738 (2015).

    Google Scholar 

  105. Connacher, W. et al. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18, 1952–1996 (2018).

    Google Scholar 

  106. Zhang, N. Q. & Friend, J. Fabrication of nanoheight channels incorporating surface acoustic wave actuation via lithium niobate for acoustic nanofluidics. J. Vis. Exp. 156, e60648 (2020).

    Article  Google Scholar 

  107. Mei, J. Y., Zhang, N. Q. & Friend, J. Fabrication of surface acoustic wave devices on lithium niobate. J. Vis. Exp. 160, e61013 (2020).

    Article  Google Scholar 

  108. Shilton, R., Tan, M. K., Yeo, L. Y. & Friend, J. R. Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J. Appl. Phys. 104, 014910 (2008).

    ADS  Google Scholar 

  109. Ding, X. et al. Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab Chip 12, 2491–2497 (2012).

    Google Scholar 

  110. Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 52, 353001 (2019).

    Google Scholar 

  111. Fu, Y. Q. et al. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. Lab Chip 21, 254–271 (2021).

    Google Scholar 

  112. Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009). This study demonstrates the manipulation of particles and cells using surface acoustic waves.

    Google Scholar 

  113. Riaud, A., Baudoin, M., Bou Matar, O., Becerra, L. & Thomas, J.-L. Selective manipulation of microscopic particles with precursor swirling Rayleigh waves. Phys. Rev. Appl. 7, 024007 (2017).

    ADS  Google Scholar 

  114. Tian, Z. et al. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).

    ADS  Google Scholar 

  115. Zhang, N., Mei, J., Gopesh, T. & Friend, J. Optimized, omnidirectional surface acoustic wave source: 152° Y-rotated cut of lithium niobate for acoustofluidics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67, 2176–2186 (2020).

    Google Scholar 

  116. Zhang, N. et al. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab Chip 21, 904–915 (2021).

    Google Scholar 

  117. Bach, J. S. & Bruus, H. Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities. J. Acoust. Soc. Am. 144, 766–784 (2018).

    ADS  Google Scholar 

  118. Rezk, A. R., Manor, O., Yeo, L. Y. & Friend, J. R. Double flow reversal in thin liquid films driven by megahertz-order surface vibration. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130765 (2014).

    ADS  Google Scholar 

  119. Meng, L. et al. Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device. Sens. Actuat. B Chem. 160, 1599–1605 (2011).

    Google Scholar 

  120. Travagliati, M. et al. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Anal. Chem. 86, 10633–10638 (2014).

    Google Scholar 

  121. Rezk, A. R., Yeo, L. Y. & Friend, J. R. Poloidal flow and toroidal particle ring formation in a sessile drop driven by megahertz order vibration. Langmuir 30, 11243–11247 (2014).

    Google Scholar 

  122. Li, H., Friend, J. & Yeo, L. Surface acoustic wave concentration of particle and bioparticle suspensions. Biomed. Microdevices 28, 4098–4104 (2007).

    Google Scholar 

  123. Nama, N. et al. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab Chip 15, 2700–2709 (2015).

    Google Scholar 

  124. Langelier, S. M., Yeo, L. Y. & Friend, J. UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. Lab Chip 12, 2970–2976 (2012).

    Google Scholar 

  125. Shi, J., Mao, X., Ahmed, D., Colletti, A. & Huang, T. J. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8, 221–223 (2008).

    Google Scholar 

  126. Marston, P. L. Finite-size radiation force correction for inviscid spheres in standing waves. J. Acoust. Soc. Am. 142, 1167 (2017).

    ADS  Google Scholar 

  127. Silva, G. T., Lopes, J. H., Leão-Neto, J. P., Nichols, M. K. & Drinkwater, B. W. Particle patterning by ultrasonic standing waves in a rectangular cavity. Phys. Rev. Appl. 11, 054044 (2019).

    ADS  Google Scholar 

  128. Oberti, S., Neild, A. & Dual, J. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound. J. Acoust. Soc. Am. 121, 778–785 (2007).

    ADS  Google Scholar 

  129. Lin, Q. et al. Trapping of sub-wavelength microparticles and cells in resonant cylindrical shells. Appl. Phys. Lett. 117, 053501 (2020).

    ADS  Google Scholar 

  130. Baresch, D., Thomas, J.-L. & Marchiano, R. Spherical vortex beams of high radial degree for enhanced single-beam tweezers. J. Appl. Phys. 113, 184901 (2013).

    ADS  Google Scholar 

  131. Jia, Y.-R. et al. Acoustic tweezing for both Rayleigh and Mie particles based on acoustic focused petal beams. Appl. Phys. Lett. 116, 263504 (2020).

    ADS  Google Scholar 

  132. Baudoin, M. et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 4244 (2020). This study demonstrates the selective manipulation of individual cells within a microfluidic chamber using acoustic vortices.

    ADS  Google Scholar 

  133. Baresch, D. & Garbin, V. Acoustic trapping of microbubbles in complex environments and controlled payload release. Proc. Natl Acad. Sci. USA 117, 15490–15496 (2020).

    ADS  Google Scholar 

  134. Andrade, M. A. B., Perez, N. & Adamowski, J. C. Review of progress in acoustic levitation. Braz. J. Phys. 48, 190–213 (2018).

    ADS  Google Scholar 

  135. Xie, W. J. & Wei, B. Dependence of acoustic levitation capabilities on geometric parameters. Phys. Rev. E 66, 026605 (2002).

    ADS  Google Scholar 

  136. Ide, T., Friend, J., Nakamura, K. & Ueha, S. A non-contact linear bearing and actuator via ultrasonic levitation. Sens. Actuat. A Phys. 135, 740–747 (2007).

    Google Scholar 

  137. Drinkwater, B. W. A Perspective on acoustical tweezers-devices, forces, and biomedical applications. Appl. Phys. Lett. 117, 180501 (2020).

    ADS  Google Scholar 

  138. Ma, Z., Collins, D. J., Guo, J. & Ai, Y. Mechanical properties based particle separation via traveling surface acoustic wave. Anal. Chem. 88, 11844–11851 (2016).

    Google Scholar 

  139. Fan, X.-D. & Zhang, L. Trapping force of acoustical Bessel beams on a sphere and stable tractor beams. Phys. Rev. Appl. 11, 014055 (2019).

    ADS  Google Scholar 

  140. Zhang, L. & Marston, P. L. Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres. Phys. Rev. E 84, 035601 (2011).

    ADS  Google Scholar 

  141. Xu, S. J., Qiu, C. Y. & Liu, Z. Y. Transversally stable acoustic pulling force produced by two crossed plane waves. EPL 99, 44003 (2012).

    ADS  Google Scholar 

  142. Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T. J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).

    Google Scholar 

  143. Courtney, C. R. P. et al. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 337–360 (2011).

    ADS  Google Scholar 

  144. Manneberg, O., Vanherberghen, B., Önfelt, B. & Wiklund, M. Flow-free transport of cells in microchannels by frequency-modulated ultrasound. Lab Chip 9, 833–837 (2009).

    Google Scholar 

  145. Courtney, C. R. et al. Manipulation of microparticles using phase-controllable ultrasonic standing waves. J. Acoust. Soc. Am. 128, EL195–EL199 (2010).

    Google Scholar 

  146. Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012). This study demonstrates an acoustic manipulation method to precisely control a single microparticle, cell or organism along an arbitrary path in two dimensions.

    ADS  Google Scholar 

  147. Meng, L. et al. On-chip targeted single cell sonoporation with microbubble destruction excited by surface acoustic waves. Appl. Phys. Lett. 104, 073701 (2014).

    ADS  Google Scholar 

  148. Glynne-Jones, P., Boltryk, R. J. & Hill, M. Acoustofluidics 9: modelling and applications of planar resonant devices for acoustic particle manipulation. Lab Chip 12, 1417–1426 (2012).

    Google Scholar 

  149. Augustsson, P., Karlsen, J. T., Su, H. W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).

    ADS  Google Scholar 

  150. Destgeer, G., Ha, B. H., Jung, J. H. & Sung, H. J. Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14, 4665–4672 (2014).

    Google Scholar 

  151. Ren, L. et al. Standing surface acoustic wave (SSAW)-based fluorescence-activated cell sorter. Small 14, 1801996 (2018).

    Google Scholar 

  152. Ren, L. et al. A high-throughput acoustic cell sorter. Lab Chip 15, 3870–3879 (2015).

    Google Scholar 

  153. Mutafopulos, K. et al. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). Lab Chip 19, 2435–2443 (2019).

    Google Scholar 

  154. Tan, M., Friend, J. & Yeo, L. Microparticle collection and concentration via a miniature surface acoustic wave device. Lab Chip 7, 618–625 (2007).

    Google Scholar 

  155. Collins, D. J., Ma, Z. & Ai, Y. Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields. Anal. Chem. 88, 5513–5522 (2016).

    Google Scholar 

  156. Cui, W., Pang, W., Yang, Y., Li, T. & Duan, X. Theoretical and experimental characterizations of gigahertz acoustic streaming in microscale fluids. Nanotechnol. Precis. Eng. 2, 15–22 (2019).

    Google Scholar 

  157. Li, H., Friend, J. R. & Yeo, L. Y. A scaffold cell seeding method driven by surface acoustic waves. Biomaterials 28, 4098–4104 (2007).

    Google Scholar 

  158. Tan, M., Friend, J. & Yeo, L. Direct visualization of surface acoustic waves along substrates using smoke particles. Appl. Phys. Lett. 91, 224101 (2007).

    ADS  Google Scholar 

  159. Miansari, M., Qi, A., Yeo, L. Y. & Friend, J. R. Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv. Funct. Mater. 25, 1014–1023 (2015).

    Google Scholar 

  160. Hamilton, M. F., Ilinskii, Y. A. & Zabolotskaya, E. A. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J. Acoust. Soc. Am. 113, 153–160 (2003).

    ADS  Google Scholar 

  161. Tan, M. K., Tjeung, R., Ervin, H., Yeo, L. Y. & Friend, J. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Appl. Phys. Lett. 95, 134101 (2009).

    ADS  Google Scholar 

  162. Schneider, S. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl Acad. Sci. USA 104, 7899–7903 (2008).

    ADS  Google Scholar 

  163. Raghavan, R. Theory for acoustic streaming in soft porous matter and its applications to ultrasound-enhanced convective delivery. J. Therap. Ultrasound 6, 6 (2018).

    Google Scholar 

  164. Huang, A., Liu, H., Manor, O., Liu, P. & Friend, J. Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020).

    Google Scholar 

  165. Patel, M. V., Nanayakkara, I. A., Simon, M. G. & Lee, A. P. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab Chip 14, 3860–3872 (2014).

    Google Scholar 

  166. Kurashina, Y., Takemura, K. & Friend, J. Cell agglomeration in the wells of a 24-well plate using acoustic streaming. Lab Chip 17, 876–886 (2017).

    Google Scholar 

  167. Mokhtare, A. et al. O-124 Contact-free oocyte denudation in a chip-scale ultrasonic microfluidic device. Hum. Reprod. 36 (Suppl. 1), deab126.049 (2021).

    Google Scholar 

  168. Iranmanesh, I. et al. Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips. Biomed. Microdevices 18, 1–7 (2016).

    Google Scholar 

  169. Bussonniere, A., Baudoin, M., Brunet, P. & Matar, O. B. Dynamics of sessile and pendant drops excited by surface acoustic waves: gravity effects and correlation between oscillatory and translational motions. Phys. Rev. E 93, 053106 (2016).

    ADS  Google Scholar 

  170. Baudoin, M., Brunet, P., Bou Matar, O. & Herth, E. Low power sessile droplets actuation via modulated surface acoustic waves. Appl. Phys. Lett. 100, 154102 (2012).

    ADS  Google Scholar 

  171. Toegl, A., Kirchner, R., Gauer, C. & Wixforth, A. Enhancing results of microarray hybridizations through microagitation. JBT 14, 197 (2003).

    Google Scholar 

  172. Combriat, T., Mekki-Berrada, F., Thibault, P. & Marmottant, P. Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound. Phys. Rev. Fluids 3, 013602 (2018).

    ADS  Google Scholar 

  173. Bertin, N. et al. Bubble-based acoustic micropropulsors: active surfaces and mixers. Lab Chip 17, 1515–1528 (2017).

    Google Scholar 

  174. Wang, C., Rallabandi, B. & Hilgenfeldt, S. Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25, 022002 (2013).

    ADS  Google Scholar 

  175. Doinikov, A. A. & Bouakaz, A. Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127, 703–709 (2010).

    ADS  Google Scholar 

  176. Marmottant, P. & Hilgenfeldt, S. A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. USA 101, 9523–9527 (2004).

    ADS  Google Scholar 

  177. Huang, P.-H. et al. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 13, 3847–3852 (2013).

    Google Scholar 

  178. Huang, P.-H. et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14, 4319–4323 (2014).

    Google Scholar 

  179. Zhang, N., Horesh, A. & Friend, J. Manipulation and mixing of 200 femtoliter droplets in nanofluidic channels using MHz-order surface acoustic waves. Adv. Sci. 8, 2100408 (2021).

    Google Scholar 

  180. Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA 112, 43–48 (2015).

    ADS  Google Scholar 

  181. Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 113, 1522–1527 (2016).

    ADS  Google Scholar 

  182. Evander, M. et al. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal. Chem. 79, 2984–2991 (2007).

    Google Scholar 

  183. Hultström, J. et al. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med. Biol. 33, 145–151 (2007).

    Google Scholar 

  184. Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).

    ADS  Google Scholar 

  185. Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Appl. Phys. Lett. 102, 123508 (2013).

    ADS  Google Scholar 

  186. Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).

    ADS  Google Scholar 

  187. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015). This study describes the development of an acoustofluidic technique for performing high-throughput measurements of single molecules and demonstrates its potential to study protein–protein and protein–DNA interactions.

    Google Scholar 

  188. Sorkin, R. et al. Probing cellular mechanics with acoustic force spectroscopy. Mol. Biol. Cell 29, 2005–2011 (2018).

    Google Scholar 

  189. Cartagena-Rivera, A. X., Van Itallie, C. M., Anderson, J. M. & Chadwick, R. S. Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat. Commun. 8, 1030 (2017).

    ADS  Google Scholar 

  190. Kamsma, D. et al. Single-cell acoustic force spectroscopy: resolving kinetics and strength of T cell adhesion to fibronectin. Cell Rep. 24, 3008–3016 (2018).

    Google Scholar 

  191. Kamsma, D., Creyghton, R., Sitters, G., Wuite, G. J. & Peterman, E. J. Tuning the music: acoustic force spectroscopy (AFS) 2.0. Methods 105, 26–33 (2016).

    Google Scholar 

  192. Baasch, T. et al. Acoustic compressibility of Caenorhabditis elegans. Biophys. J. 115, 1817–1825 (2018).

    ADS  Google Scholar 

  193. Hyun, K.-A., Kim, J., Gwak, H. & Jung, H.-I. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst 141, 382–392 (2016).

    ADS  Google Scholar 

  194. Pantel, K. & Alix-Panabières, C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol. Med. 16, 398–406 (2010).

    Google Scholar 

  195. Simpson, R. J., Lim, J. W., Moritz, R. L. & Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteom. 6, 267–283 (2009).

    Google Scholar 

  196. Augustsson, P., Magnusson, C., Nordin, M., Lilja, H. & Laurell, T. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84, 7954–7962 (2012). This study shows the use of acoustofluidic technologies to isolate rare cancer cells from WBCs, demonstrating the potential of acoustofluidics in point-of-care diagnostics.

    Google Scholar 

  197. Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

    ADS  Google Scholar 

  198. Wu, M. et al. Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14, 1801131 (2018).

    Google Scholar 

  199. Lee, K., Shao, H., Weissleder, R. & Lee, H. Acoustic purification of extracellular microvesicles. ACS Nano 9, 2321–2327 (2015).

    Google Scholar 

  200. Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    ADS  Google Scholar 

  201. Wang, Z. et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst. Nanoeng. 7, 20 (2021).

    ADS  Google Scholar 

  202. Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).

    Google Scholar 

  203. Hammarström, B., Laurell, T. & Nilsson, J. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12, 4296–4304 (2012).

    Google Scholar 

  204. Rezeli, M. et al. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation. Anal. Chem. 88, 8577–8586 (2016).

    Google Scholar 

  205. Ku, A. et al. Acoustic enrichment of extracellular vesicles from biological fluids. Anal. Chem. 90, 8011–8019 (2018).

    Google Scholar 

  206. Ku, A. et al. A urinary extracellular vesicle microRNA biomarker discovery pipeline; from automated extracellular vesicle enrichment by acoustic trapping to microRNA sequencing. PLoS ONE 14, e0217507 (2019).

    Google Scholar 

  207. Zhang, S. P. et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nat. Commun. 9, 2928 (2018).

    ADS  Google Scholar 

  208. Franke, T., Braunmüller, S., Schmid, L., Wixforth, A. & Weitz, D. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010).

    Google Scholar 

  209. Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M. & Lo, Y.-H. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab Chip 10, 1567–1573 (2010).

    Google Scholar 

  210. Zhang, J. et al. Fluorescence-based sorting of Caenorhabditis elegans via acoustofluidics. Lab Chip 20, 1729–1739 (2020).

    Google Scholar 

  211. Lee, C.-Y., Chang, C.-L., Wang, Y.-N. & Fu, L.-M. Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011).

    Google Scholar 

  212. Ozcelik, A. et al. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Anal. Chem. 86, 5083–5088 (2014).

    Google Scholar 

  213. Luong, T.-D., Phan, V.-N. & Nguyen, N.-T. High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluidics Nanofluidics 10, 619–625 (2011).

    Google Scholar 

  214. Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).

    ADS  Google Scholar 

  215. Mao, Z. et al. Enriching nanoparticles via acoustofluidics. Acs Nano 11, 603–612 (2017).

    Google Scholar 

  216. Cui, W. et al. Hypersonic-Induced 3D hydrodynamic tweezers for versatile manipulations of micro/nanoscale objects. Part. Part. Syst. Charact. 35, 1800068 (2018).

    Google Scholar 

  217. Olofsson, K., Hammarström, B. & Wiklund, M. Ultrasonic based tissue modelling and engineering. Micromachines 9, 594 (2018).

    Google Scholar 

  218. Olofsson, K. et al. Acoustic formation of multicellular tumor spheroids enabling on-chip functional and structural imaging. Lab Chip 18, 2466–2476 (2018).

    Google Scholar 

  219. Chen, B. et al. High-throughput acoustofluidic fabrication of tumor spheroids. Lab Chip 19, 1755–1763 (2019).

    Google Scholar 

  220. Armstrong, J. P. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, 1802649 (2018).

    Google Scholar 

  221. Lata, J. P. et al. Surface acoustic waves grant superior spatial control of cells embedded in hydrogel fibers. Adv. Mater. 28, 8632–8638 (2016).

    Google Scholar 

  222. Kang, B. et al. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat. Commun. 9, 5402 (2018). This article demonstrates how acoustofluidic technologies can be used in practical tissue engineering applications by creating artificial tissues with acoustically aligned cells and implanting them into a mouse model.

    ADS  Google Scholar 

  223. Gu, Y. et al. Acoustofluidic holography for micro-to nanoscale particle manipulation. ACS Nano 14, 14635–14645 (2020).

    Google Scholar 

  224. Ma, Z. et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater. 32, 1904181 (2020).

    Google Scholar 

  225. Hagsäter, S. et al. Acoustic resonances in straight micro channels: beyond the 1D-approximation. Lab Chip 8, 1178–1184 (2008).

    Google Scholar 

  226. Skov, N. R., Bach, J. S., Winckelmann, B. G. & Bruus, H. 3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. Aims Mathem. 4, 99–111 (2019).

    MathSciNet  MATH  Google Scholar 

  227. Bodé, W. N. & Bruus, H. Numerical study of the coupling layer between transducer and chip in acoustofluidic devices. J. Acoust. Soc. Am. 149, 3096–3105 (2021).

    ADS  Google Scholar 

  228. Steckel, A. G. & Bruus, H. Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes. J. Acoust. Soc. Am. 150, 634–645 (2021).

    ADS  Google Scholar 

  229. Hammarström, B., Evander, M., Wahlström, J. & Nilsson, J. Frequency tracking in acoustic trapping for improved performance stability and system surveillance. Lab Chip 14, 1005–1013 (2014).

    Google Scholar 

  230. Lickert, F., Ohlin, M., Bruus, H. & Ohlsson, P. Acoustophoresis in polymer-based microfluidic devices: modeling and experimental validation. J. Acoust. Soc. Am. 149, 4281–4291 (2021).

    ADS  Google Scholar 

  231. Tahmasebipour, A., Friedrich, L., Begley, M., Bruus, H. & Meinhart, C. Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry. J. Acoust. Soc. Am. 148, 359–373 (2020).

    ADS  Google Scholar 

  232. Olofsson, K., Hammarström, B. & Wiklund, M. Acoustic separation of living and dead cells using high density medium. Lab Chip 20, 1981–1990 (2020).

    Google Scholar 

  233. Qiu, W., Bruus, H. & Augustsson, P. Particle-size-dependent acoustophoretic motion and depletion of micro-and nano-particles at long timescales. Phys. Rev. E 102, 013108 (2020).

    ADS  Google Scholar 

  234. Hammarström, B., Skov, N. R., Olofsson, K., Bruus, H. & Wiklund, M. Acoustic trapping based on surface displacement of resonance modes. J. Acoust. Soc. Am. 149, 1445–1453 (2021).

    ADS  Google Scholar 

  235. Antfolk, M., Muller, P. B., Augustsson, P., Bruus, H. & Laurell, T. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis. Lab Chip 14, 2791–2799 (2014).

    Google Scholar 

  236. Glynne-Jones, P., Boltryk, R. J., Harris, N. R., Cranny, A. W. & Hill, M. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50, 68–75 (2010).

    Google Scholar 

  237. Jonnalagadda, U. S. et al. Acoustically modulated biomechanical stimulation for human cartilage tissue engineering. Lab Chip 18, 473–485 (2018).

    Google Scholar 

  238. Bach, J. S. & Bruus, H. Suppression of acoustic streaming in shape-optimized channels. Phys. Rev. Lett. 124, 214501 (2020).

    ADS  Google Scholar 

  239. Karlsen, J. T., Qiu, W., Augustsson, P. & Bruus, H. Acoustic streaming and its suppression in inhomogeneous fluids. Phys. Rev. Lett. 120, 054501 (2018).

    ADS  Google Scholar 

  240. Van Assche, D. et al. Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate. Sci. Rep. 10, 3670 (2020).

    ADS  Google Scholar 

  241. Svennebring, J., Manneberg, O. & Wiklund, M. Temperature regulation during ultrasonic manipulation for long-term cell handling in a microfluidic chip. J. Micromech. Microeng. 17, 2469 (2007).

    ADS  Google Scholar 

  242. Ohlin, M., Iranmanesh, I., Christakou, A. E. & Wiklund, M. Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip. Lab Chip 15, 3341–3349 (2015).

    Google Scholar 

  243. Cui, M., Kim, M., Weisensee, P. B. & Meacham, J. M. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves. Lab Chip 21, 2534–2543 (2021).

    Google Scholar 

  244. Bazou, D., Kuznetsova, L. A. & Coakley, W. T. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound Med. Biol. 31, 423–430 (2005).

    Google Scholar 

  245. Apfel, R. E. & Holland, C. K. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol. 17, 179–185 (1991).

    Google Scholar 

  246. Wiklund, M. Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012).

    Google Scholar 

  247. Tian, Z. et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci. Adv. 6, eabb0494 (2020).

    ADS  Google Scholar 

  248. Bachman, H. et al. Open source acoustofluidics. Lab Chip 19, 2404–2414 (2019).

    Google Scholar 

  249. Devendran, C., Carthew, J., Frith, J. E. & Neild, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Adv. Sci. 6, 1902326 (2019).

    Google Scholar 

  250. Li, H., Friend, J., Yeo, L., Dasvarma, A. & Traianedes, K. Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. Biomicrofluidics 3, 034102 (2009).

    Google Scholar 

  251. Chen, C. et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat. Commun. 12, 1118 (2021).

    ADS  Google Scholar 

  252. Ghanem, M. A. et al. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl Acad. Sci. USA 117, 16848–16855 (2020).

    ADS  Google Scholar 

  253. Gracioso Martins, A. M. et al. Toward complete miniaturisation of flow injection analysis systems: microfluidic enhancement of chemiluminescent detection. Anal. Chem. 86, 10812–10819 (2014).

    Google Scholar 

  254. Li, H., Friend, J. R. & Yeo, L. Y. Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. Phys. Rev. Lett. 101, 084502 (2008).

    ADS  Google Scholar 

  255. Huang, P.-H. et al. An acoustofluidic sputum liquefier. Lab Chip 15, 3125–3131 (2015).

    Google Scholar 

  256. Wu Z. et al. Scaffold-free generation of heterotypic cell spheroids using acoustofluidics. Lab Chip 21, 3498–3508 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (NIH) (U18TR003778, R01GM135486, UH3TR002978, R01GM141055, R01GM132603, R01HD103727 and R01NS115591), National Science Foundation (NSF) (ECCS-1807601 and ECCS-1542148), National Natural Science Foundation of China (11974372) (to F.C.) and W.M. Keck Foundation. They thank S. Yang, S. P. Zhang, R. Zhong and L. Zhang for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.J.H., J.R., F.C. and J.F.); Experimentation (J.F., F.C., J.R. and T.J.H.); Results (F.C., J.F., J.R. and T.J.H.); Applications (T.J.H. and J.R.); Reproducibility and data deposition (M.W., J.R. and T.J.H.); Limitations and optimizations (M.W., J.R. and T.J.H.); Outlook (T.J.H., J.R. and M.W.); Overview of the Primer (T.J.H.).

Corresponding authors

Correspondence to Feiyan Cai, James Friend, Martin Wiklund or Tony Jun Huang.

Ethics declarations

Competing interests

T.J.H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers. J.F. is a founding partner of Sonocharge Inc., commercializing acoustically driven rechargeable battery enhancement technology, and ARNAsystems Inc., commercializing rapid acoustofluidic diagnostic devices. J.R., F.C. and M.W. declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ye Ai, Helen Mulvana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Inviscid fluid

A fluid that has a viscosity of zero.

Rayleigh particle

A particle that has a radius that is much smaller than the acoustic wavelength.

Standing wave

A stationary wave formed by the superposition of counterpropagating travelling waves, which are commonly formed by the use of opposing transducers or reflective surfaces.

Zero mean mass flux

The absence of mass flow.

Zero Lagrangian mean

The Lagrangian specification of fluid flow states that the observer follows individual fluid parcels through time.

Eulerian mean

The Eulerian specification of fluid flow states that the observer follows a specific location in space through which the fluid flows as time passes.

Q factor

Shorthand for the quality factor, a parameter that quantifies the damping at each resonance frequency.

Time-reversal principle

A signal processing technique that can be used to focus acoustic waves to a specific location.

Rayleigh (surface) wave

A flexural wave isolated to a surface. Typically generated for acoustofluidics using an interdigital electrode deposited upon a piezoelectric substrate.

Lamb wave

A flexural wave in a structure that has a wavelength at or less than two times the thickness of the structure. Typically appears in surface acoustic wave (SAW) devices in the piezoelectric media when the resonance frequency is too low to isolate the wave to the surface.

Pressure nodes

Minimum pressure locations.

Pressure antinodes

Maximum pressure locations.

Mie particles

Particles of about the same size as the acoustic wavelength.

Acoustic levitation

The use of the acoustic radiation force to counteract gravity and suspend a particle in air.

Dynamic gradient field

A field in which the acoustic gradient force changes with time.

Iso-acoustic point

When particles or cells flow through a liquid that has a gradient in its acoustic impedance, the iso-acoustic point represents the location where the acoustic contrast between the particle/cell and the surrounding liquid is zero.

Exosomes

Nanometre-sized extracellular vesicles that contain molecular cargo from their cell of origin.

Acoustic cavitation

The growth and collapse of microbubbles under the influence of an acoustic field in liquids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufo, J., Cai, F., Friend, J. et al. Acoustofluidics for biomedical applications. Nat Rev Methods Primers 2, 30 (2022). https://doi.org/10.1038/s43586-022-00109-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00109-7

  • Springer Nature Limited

This article is cited by

Navigation