Skip to main content
Log in

Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O

  • Article
  • Published:

From Nature Catalysis

View current issue Submit your manuscript

Abstract

The electrochemical reduction of CO2 to valuable C2+ feedstocks is hindered by the competitive formation of C1 products and H2 evolution. Here we tuned the H2O thermodynamic activity between 0.97 and 0.47 using water-in-salt electrolytes to obtain mechanistic insights into the role of H2O in controlling C–C coupling versus C1 product formation on Cu electrodes. By lowering the thermodynamic H2O activity to 0.66, we obtained a Faradaic efficiency of ~73% at a partial current density of −110 mA cm2 for C2+ products, at modest overpotentials. The adjustment of the thermodynamic H2O activity provided fine control over C2+/C1 ratios, spanning a range from 1 to 20. The trends support the pivotal role of the thermodynamic H2O activity in increasing the CO surface coverages and promoting C–C coupling to C2 products. These findings highlight the potential of tuning thermodynamic H2O activity as a guiding principle to maximize CO2 reduction into highly desirable C2+ products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Physical properties of electrolytes as a function of NaClO4 concentration.
Fig. 2: Electrochemical CO2 reduction on a 25-nm-thick Cu-coated GDE.
Fig. 3: Reaction orders for CO2 reduction as a function of aw.
Fig. 4: Porosity-dependent reaction orders as a function of aw.
Fig. 5: CO2 reduction via time-resolved ECMS.
Fig. 6: Tafel plots for CO2 reduction products.
Fig. 7: Simplified mechanisms for CO2 reduction.
Fig. 8: CO2 reduction on Cu-nanoparticle-coated GDEs at various aw.

Similar content being viewed by others

Data availability

All data are available in the figshare repository at https://doi.org/10.6084/m9.figshare.23692962 or from the corresponding author upon reasonable request.

References

  1. Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 17–19 (1988).

  2. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  3. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  5. Watanabe, M., Shibata, M., Kato, A., Azuma, M. & Sakata, T. Design of alloy electrocatalysts for CO2 reduction III. The selective and reversible reduction of CO2 on Cu alloy electrodes. J. Electrochem. Soc. 138, 3382–3389 (1991).

    Article  CAS  Google Scholar 

  6. Kim, D. et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zaza, L., Rossi, K. & Buonsanti, R. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7, 1284–1291 (2022).

    Article  CAS  Google Scholar 

  8. Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Z.-Q., Banerjee, S., Thoi, V. S. & Shoji Hall, A. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 reduction. J. Phys. Chem. Lett. 11, 5457–5463 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  13. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Gomes, R. J. et al. Probing electrolyte influence on CO2 reduction in aprotic solvents. J. Phys. Chem. C 126, 13595–13606 (2022).

    Article  CAS  Google Scholar 

  15. Dong, Q., Zhang, X., He, D., Lang, C. & Wang, D. Role of H2O in CO2 electrochemical reduction as studied in a water-in-salt system. ACS Cent. Sci. 5, 1461–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whipple, D. T., Finke, E. C. & Kenis, P. J. A. Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid State Lett. 13, B109 (2010).

    Article  CAS  Google Scholar 

  17. Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    Article  CAS  Google Scholar 

  18. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  19. Malkani, A. S., Anibal, J. & Xu, B. Cation effect on interfacial CO2 concentration in the electrochemical CO2 reduction reaction. ACS Catal. 10, 14871–14876 (2020).

    Article  CAS  Google Scholar 

  20. Chan, K. A few basic concepts in electrochemical carbon dioxide reduction. Nat. Commun. 11, 5954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

    Article  Google Scholar 

  22. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  23. Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nesbitt, N. T. & Smith, W. A. Water and solute activities regulate CO2 reduction in gas-diffusion electrodes. J. Phys. Chem. C 125, 13085–13095 (2021).

    Article  CAS  Google Scholar 

  25. Ren, W., Xu, A., Chan, K. & Hu, X. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202214173 (5022).

    Article  Google Scholar 

  26. Shin, S.-J. et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie, M. S. et al. Amino acid-modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016).

    Article  CAS  Google Scholar 

  28. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J. et al. Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. Int. Ed. 59, 4464–4469 (2020).

    Article  CAS  Google Scholar 

  30. Bro, P. & Kang, H. Y. The low‐temperature activity of water in concentrated KOH solutions. J. Electrochem. Soc. 118, 1430 (1971).

    Article  CAS  Google Scholar 

  31. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, X. et al. C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. Int. Ed. 61, e202111167 (2022).

    Article  CAS  Google Scholar 

  33. Lu, X., Shinagawa, T. & Takanabe, K. Product distribution control guided by a microkinetic analysis for CO reduction at high-flux electrocatalysis using gas-diffusion Cu electrodes. ACS Catal. 13, 1791–1803 (2023).

    Article  CAS  Google Scholar 

  34. Suo, L. et al. Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, R. et al. Potential-dependent layering in the electrochemical double layer of water-in-salt electrolytes. ACS Appl. Energy Mater. 3, 8086–8094 (2020).

    Article  CAS  Google Scholar 

  36. Li, C.-Y. et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13, 5330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, Y., Zhang, Y.-H. & Zhao, L.-J. ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 6, 537–542 (2004).

    Article  CAS  Google Scholar 

  38. Miller, A. G. & Macklin, J. W. Vibrational spectroscopic studies of sodium perchlorate contact-ion-pair formation in aqueous solution. J. Phys. Chem. 89, 1193–1201 (1985).

    Article  CAS  Google Scholar 

  39. Toner, J. D. & Catling, D. C. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: water activity >0.6 below 200 K. Geochim. Cosmochim. Acta 181, 164–174 (2016).

    Article  CAS  Google Scholar 

  40. Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques and Applications (Wiley-VCH, 2011).

  41. Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).

    Article  CAS  Google Scholar 

  42. Wuttig, A., Ryu, J. & Surendranath, Y. Electrolyte competition controls surface binding of CO intermediates to CO2 reduction catalysts. J. Phys. Chem. C 125, 17042–17050 (2021).

    Article  CAS  Google Scholar 

  43. Ovalle, V. J. & Waegele, M. M. Impact of electrolyte anions on the adsorption of CO on Cu electrodes. J. Phys. Chem. C 124, 14713–14721 (2020).

    Article  CAS  Google Scholar 

  44. Aoki, K. J., He, R. & Chen, J. Double-layer capacitances caused by ion–solvent interaction in the form of Langmuir-typed concentration dependence. Electrochem. 2, 631–642 (2021).

    Article  CAS  Google Scholar 

  45. Xue, S., Garlyyev, B., Auer, A., Kunze-Liebhäuser, J. & Bandarenka, A. S. How the nature of the alkali metal cations influences the double-layer capacitance of Cu, Au, and Pt single-crystal electrodes. J. Phys. Chem. C 124, 12442–12447 (2020).

    Article  CAS  Google Scholar 

  46. Garlyyev, B., Xue, S., Watzele, S., Scieszka, D. & Bandarenka, A. S. Influence of the nature of the alkali metal cations on the electrical double-layer capacitance of model Pt(111) and Au(111) electrodes. J. Phys. Chem. Lett. 9, 1927–1930 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Antipin, D. & Risch, M. Calculation of the Tafel slope and reaction order of the oxygen evolution reaction between pH 12 and pH 14 for the adsorbate mechanism. Electrochem. Sci. Adv. https://doi.org/10.1002/elsa.202100213 (2022).

  48. Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 13, 537–549 (2009).

    Article  CAS  Google Scholar 

  49. Eberhardt, D., Santos, E. & Schmickler, W. Hydrogen evolution on silver single crystal electrodes—first results. J. Electroanal. Chem. 461, 76–79 (1999).

    Article  CAS  Google Scholar 

  50. He, M. et al. Selective enhancement of methane formation in electrochemical CO2 reduction enabled by a Raman-inactive oxygen-containing species on Cu. ACS Catal. 12, 6036–6046 (2022).

    Article  CAS  Google Scholar 

  51. Thermo Scientific Orion ROSS pH Electrodes, User Manual. 263745-001, Rev. B, pg. 16. Nov. 2014.

  52. Knauss, K. G., Wolery, T. J. & Jackson, K. J. A new approach to measuring pH in brines and other concentrated electrolytes. Geochim. Cosmochim. Acta 54, 1519–1523 (1990).

    Article  CAS  Google Scholar 

  53. Mesmer, R. E. Comments on A new approach to measuring pH in brines and other concentrated electrolytes by K. G. Knauss, T. J. Wolery, and K. J. Jackson. Geochim. Cosmochim. Acta (USA) 55 (1991).

  54. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001).

  55. Singh, R. K., Devivaraprasad, R., Kar, T., Chakraborty, A. & Neergat, M. Electrochemical impedance spectroscopy of oxygen reduction reaction (ORR) in a rotating disk electrode configuration: effect of ionomer content and carbon-support. J. Electrochem. Soc. 162, F489–F498 (2015).

    Article  CAS  Google Scholar 

  56. Jorcin, J.-B., Orazem, M. E., Pebere, N. & Tribollet, B. CPE analysis by local impedance analysis. Electrochim. Acta 51, 1473–1479 (2006).

    Article  CAS  Google Scholar 

  57. SpectroInlets Soft Ionization EC-MS. Technical Note #7; https://spectroinlets.com/wpcontent/uploads/2022/01/Technical_note__7.pdf

  58. Li, J. et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 14, 340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, M. H. et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today 29, 26–36, 1369–7021 (2019).

  60. Yu, H. & Obrovac, M. N. Quantitative determination of carbon dioxide content in organic electrolytes by infrared spectroscopy. J. Electrochem. Soc. 166, A2467 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S.H. acknowledges financial support from the National Science Foundation under award no. CHE-2102648. H.Z. acknowledges the support from the National Science Foundation Graduate Research Fellowship under grant No. 2139757. Certain equipment, instruments, software or materials, commercial or non-commercial, are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

A.S.H. conceived the idea and supervised the project. H.Z. and J.G. designed and performed the electrolysis experiments and analysed the data. D.R. and H.Z. performed the differential ECMS experiments and the Raman spectroscopic analysis of the bulk solution. A.S.H., H.Z., D.R. and J.G. wrote the paper.

Corresponding author

Correspondence to Anthony Shoji Hall.

Ethics declarations

Competing interests

H.Z., J.G. and A.S.H. and their institutions have filed a US provisional patent application titled ‘Controlling water activity to promote selective electrochemical reactions’ (63/439,498). D.R. declares no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9 and Figs. 1–18.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gao, J., Raciti, D. et al. Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O. Nat Catal 6, 807–817 (2023). https://doi.org/10.1038/s41929-023-01010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01010-6

  • Springer Nature Limited

This article is cited by

Navigation