Skip to main content

Advertisement

Log in

Quantifying direct yield benefits of soil carbon increases from cover cropping

  • Analysis
  • Published:

From Nature Sustainability

View current issue Submit your manuscript

Abstract

Cropland management practices that restore soil organic carbon (SOC) are increasingly presented as climate solutions that also enhance yields. But how often these benefits align at the farm level—the scale of farmers’ decision making—remains uncertain. We examined concurrent SOC and yield responses to cover cropping, including their direct connection, with a global meta-analysis. Cover cropping simultaneously increased yields and SOC in 59.7% of 434 paired observations. Increases in SOC directly increased crop yields in soils with initial SOC concentrations below 11.6 g kg−1; for example, a change from 5 g kg−1 to 6 g kg−1 increased yields by +2.4%. These yield benefits of SOC did not decline as nitrogen inputs increased or when legume cover crops were used, suggesting fertility inputs cannot substitute for SOC effects. Regardless of direct effects of SOC increases on yields, integrating legume cover crops into systems with simplified rotations or with nitrogen inputs < 157 kg ha−1 season−1 N led to the largest yield increases (up to +24.3%), with legumes also increasing SOC more than non-legumes (up to +1.5 g kg−1). By simultaneously increasing yields and SOC, cover cropping provides an opportunity to benefit both food security and climate, including via direct yield benefits from SOC increases on low carbon soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Relationship between changes in SOC and yield from cover cropping.
Fig. 2: Moderators of cover cropping effects on cash crop yields.
Fig. 3: Moderators of cover cropping effects on soil organic carbon.
Fig. 4: Overlap between global cropland and soils with SOC values < 11 kg−1.

Similar content being viewed by others

Data availability

Data used in this meta-analysis are publicly available from the Dryad Digital Repository: https://doi.org/10.6078/D1013R. Global yield gap data in Fig. 4 were used from the Global Yield Gap Atlas8 (www.yieldgap.org).

Code availability

Code used in this meta-analysis are publicly available from the Dryad Digital Repository: https://doi.org/10.6078/D1013R.

References

  1. Kibblewhite, M. G., Ritz, K. & Swift, M. J. Soil health in agricultural systems. Phil. Trans. R. Soc. B 363, 685–701 (2008).

    Article  CAS  Google Scholar 

  2. Janzen, H. H., Janzen, D. W. & Gregorich, E. G. The ‘soil health’ metaphor: illuminating or illusory?. Soil Biol. Biochem. 159, 1–10 (2021).

    Article  Google Scholar 

  3. Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    Article  CAS  Google Scholar 

  4. Philip Robertson, G. et al. Farming for ecosystem services: an ecological approach to production agriculture. BioScience 64, 404–415 (2014).

    Article  CAS  Google Scholar 

  5. Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5, 15–32 (2019).

  6. Manlay, R. J., Feller, C. & Swift, M. J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 119, 217–233 (2007).

    Article  Google Scholar 

  7. Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–209 (2006).

    Article  Google Scholar 

  8. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  9. Sherwood, S. & Uphoff, N. Soil health: research, practice and policy for a more regenerative agriculture. Appl. Soil Ecol. 15, 85–97 (2000).

    Article  Google Scholar 

  10. Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Article  Google Scholar 

  11. McClelland, S. C., Paustian, K. & Schipanski, M. E. Management of cover crops in temperate climates influences soil organic carbon stocks: a meta-analysis. Ecol. Appl. 31, e02278 (2021).

    Article  Google Scholar 

  12. Jian, J., Du, X., Reiter, M. S. & Stewart, R. D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 143, 107735 (2020).

    Article  CAS  Google Scholar 

  13. Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).

    Article  CAS  Google Scholar 

  14. Bradford, M. A. et al. Soil carbon science for policy and practice. Nat. Sustain. 2, 1070–1072 (2019).

    Article  Google Scholar 

  15. Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.734088 (2021).

  16. Marcillo, G. S. & Miguez, F. E. Corn yield response to winter cover crops: an updated meta-analysis. J. Soil Water Conserv. 72, 226–239 (2017).

    Article  Google Scholar 

  17. Daryanto, S., Fu, B., Wang, L., Jacinthe, P.-A. & Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 185, 357–373 (2018).

    Article  CAS  Google Scholar 

  18. Garba, I. I., Bell, L. W. & Williams, A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: a meta-analysis. Agron. Sustain. Dev. 42, 34 (2022).

    Article  CAS  Google Scholar 

  19. Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).

    Article  Google Scholar 

  20. Deines, J. M. et al. Recent cover crop adoption is associated with small maize and soybean yield losses in the United States. Glob. Change Biol. 29, 794–807 (2023).

    Article  CAS  Google Scholar 

  21. Fageria, N. K., Baligar, V. C. & Bailey, B. A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 36, 2733–2757 (2005).

    Article  CAS  Google Scholar 

  22. Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    Article  Google Scholar 

  23. McDaniel, M. D., Tiemann, L. & Grandy, A. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

    Article  CAS  Google Scholar 

  24. Lal, R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Secur. 2, 169–177 (2010).

    Article  Google Scholar 

  25. Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article  CAS  Google Scholar 

  26. Oelofse, M. et al. Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. Eur. J. Agron. 66, 62–73 (2015).

    Article  CAS  Google Scholar 

  27. Schjønning, P. et al. in Advances in Agronomy Vol. 150 (ed. Sparks, D. L.) 35–79 (Elsevier, 2018).

  28. Pan, G., Smith, P. & Pan, W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 129, 344–348 (2009).

    Article  Google Scholar 

  29. Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 423, 363–373 (2018).

    Article  CAS  Google Scholar 

  30. Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).

    Article  Google Scholar 

  31. Bai, X. et al. Responses of soil carbon sequestration to climate‐smart agriculture practices: a meta‐analysis. Glob. Change Biol. 25, 2591–2606 (2019).

    Article  Google Scholar 

  32. Wood, S. A. & Blankinship, J. C. Making soil health science practical: guiding research for agronomic and environmental benefits. Soil Biol. Biochem. 172, 108776 (2022).

    Article  CAS  Google Scholar 

  33. Janzen, H. H., van Groenigen, K. J., Powlson, D. S., Schwinghamer, T. & van Groenigen, J. W. Photosynthetic limits on carbon sequestration in croplands. Geoderma 416, 115810 (2022).

    Article  CAS  Google Scholar 

  34. Schlesinger, W. H. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry 161, 9–17 (2022).

    Article  Google Scholar 

  35. Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).

    Article  CAS  Google Scholar 

  36. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article  CAS  Google Scholar 

  37. Yang, J. & Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 61, 3177–3189 (2010).

    Article  CAS  Google Scholar 

  38. Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article  Google Scholar 

  39. Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).

    Article  Google Scholar 

  40. Hunter, M. C. et al. Cover crop mixture effects on maize, soybean, and wheat yield in rotation. Agric. Environ. Lett. 4, 180051 (2019).

    Article  Google Scholar 

  41. Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).

    Article  Google Scholar 

  42. Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).

    Article  Google Scholar 

  43. Quemada, M., Lassaletta, L., Leip, A., Jones, A. & Lugato, E. Integrated management for sustainable cropping systems: looking beyond the greenhouse balance at the field scale. Glob. Change Biol. 26, 2584–2598 (2020).

    Article  Google Scholar 

  44. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–95 (2013).

    Article  Google Scholar 

  45. Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).

    Article  CAS  Google Scholar 

  46. Daly, A. B. et al. A holistic framework integrating plant–microbe–mineral regulation of soil bioavailable nitrogen. Biogeochemistry 154, 211–229 (2021).

    Article  CAS  Google Scholar 

  47. Rose, T. J. et al. Prospects for summer cover crops in southern Australian semi-arid cropping systems. Agric. Syst. 200, 103415 (2022).

    Article  Google Scholar 

  48. Kluger, D. M., Owen, A. B. & Lobell, D. B. Combining randomized field experiments with observational satellite data to assess the benefits of crop rotations on yields. Environ. Res. Lett. 17, 044066 (2022).

    Article  Google Scholar 

  49. Slessarev, E. W. et al. Initial soil organic carbon stocks govern changes in soil carbon: reality or artifact? Glob. Change Biol. https://doi.org/10.1111/gcb.16491 (2022).

    Article  Google Scholar 

  50. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Article  CAS  Google Scholar 

  51. Zhang, T., Chen, H. Y. H. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).

    Article  CAS  Google Scholar 

  52. Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    Article  Google Scholar 

  53. Ma, Z. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis: diversity effects on fine root productivity. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).

    Article  Google Scholar 

  54. Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).

    Article  Google Scholar 

  55. Addicott, E. T., Fenichel, E. P., Bradford, M. A., Pinsky, M. L. & Wood, S. A. Toward an improved understanding of causation in the ecological sciences. Front. Ecol. Environ. 20, 474–480 (2022).

    Article  Google Scholar 

  56. Bradford, M. A. et al. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).

    Article  Google Scholar 

  57. Hobbs, N. T. & Hilborn, R. Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol. Appl. 16, 5–19 (2006).

    Article  Google Scholar 

  58. Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).

    Article  Google Scholar 

  59. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  60. Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    Article  Google Scholar 

  61. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  62. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1494–1502 (2015).

    Article  Google Scholar 

  63. Lenth, R. V. et al. emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.5 https://CRAN.R-project.org/package=emmeans (2022).

  64. Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961).

    Article  Google Scholar 

  65. Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).

    Article  CAS  Google Scholar 

  66. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2021).

    Article  Google Scholar 

  67. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Organic Center for providing funding to T.M.B. and I.V. for this project. T.M.B. also acknowledges USDA NIFA Agriculture and Food Research initiative (grant 2017- 67013-26254). A portion of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (A.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

I.V., T.M.B. and L.P. conceived the ideas and designed methodology; I.V. and G.D.L.C. collected the data; I.V., A.G., K.E., and A.C.M. analysed the data; I.V. and T.M.B. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Timothy M. Bowles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Gina Garland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vendig, I., Guzman, A., De La Cerda, G. et al. Quantifying direct yield benefits of soil carbon increases from cover cropping. Nat Sustain 6, 1125–1134 (2023). https://doi.org/10.1038/s41893-023-01131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01131-7

  • Springer Nature Limited

Navigation