Skip to main content
Log in

Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2

  • Article
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition. In mammals, organic cation transporter (OCT) subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively. Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics and drug–drug interactions of many prescription medications, including metformin. Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here we present four cryo-electron microscopy structures of apo, substrate-bound and drug-bound OCT1 and OCT2 consensus variants, in outward-facing and outward-occluded states. Together with functional experiments, in silico docking and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and provide insights into extracellular gate occlusion. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated drug–drug interactions, which will prove critical in the preclinical evaluation of emerging therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cryo-EM structures of OCTs 1 and 2.
Fig. 2: DPH recognition by OCT1.
Fig. 3: VPM recognition by OCT1.
Fig. 4: General principles of organic cation recognition by OCT1.
Fig. 5: Extracellular gate closure in OCTs.

Similar content being viewed by others

Data availability

Atomic coordinates have been deposited in the Protein Data Bank with the PDB IDs 8ET6 (Apo-OCT1CS), 8ET7 (DPH-OCT1CS) and 8ET8 (VPM-OCT1CS), 8ET9 (MPP+-OCT2CS), respectively. The reconstructed cryo-EM maps have been deposited in the Electron Microscopy Data Bank with the IDs EMD-28586 (Apo-OCT1CS), EMD-28587 (DPH-OCT1CS) and EMD-28588 (VPM-OCT1CS), EMD-28589 (MPP+-OCT2CS), respectively. Source data are provided with this paper. Additional data pertinent to this paper are available upon reasonable request to S.-Y.L.

References

  1. Koepsell, H. Organic cation transporters in health and disease. Pharmacol. Rev. 72, 253–319 (2020).

    CAS  PubMed  Google Scholar 

  2. Chen, L. et al. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc. Natl Acad. Sci. USA 111, 9983–9988 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheung, K. W. K. et al. The effect of uremic solutes on the organic cation transporter 2. J. Pharm. Sci. 106, 2551–2557 (2017).

    CAS  PubMed  Google Scholar 

  4. Boxberger, K. H., Hagenbuch, B. & Lampe, J. N. Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake. Drug Metab. Dispos. 42, 990–995 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Bacq, A. et al. Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol. Psychiatry 17, 926–939 (2012).

    CAS  PubMed  Google Scholar 

  6. Zamek‐Gliszczynski, M. J. et al. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin. Pharmacol. Ther. 104, 890–899 (2018).

    PubMed  Google Scholar 

  7. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Investig. 117, 1422–1431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahlin, G. et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 11, 400–411 (2011).

    CAS  PubMed  Google Scholar 

  9. Song, I. S. et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 84, 559–562 (2008).

    CAS  PubMed  Google Scholar 

  10. Tzvetkov, M. V. et al. Increased systemic exposure and stronger cardiovascular and metabolic adverse reactions to fenoterol in individuals with heritable OCT1 deficiency. Clin. Pharmacol. Ther. 103, 868–878 (2018).

    CAS  PubMed  Google Scholar 

  11. Stamer, U. M. et al. Loss-of-function polymorphisms in the organic cation transporter OCT1 are associated with reduced postoperative tramadol consumption. Pain 157, 2467–2475 (2016).

    CAS  PubMed  Google Scholar 

  12. Tzvetkov, M. V. et al. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol. 86, 666–678 (2013).

    CAS  PubMed  Google Scholar 

  13. Zazuli, Z. et al. The impact of genetic polymorphisms in organic cation transporters on renal drug disposition. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21186627 (2020).

  14. Chen, E. C. et al. Discovery of competitive and noncompetitive ligands of the organic cation transporter 1 (OCT1; SLC22A1). J. Med. Chem. 60, 2685–2696 (2017).

    CAS  PubMed  Google Scholar 

  15. Jensen, O., Brockmöller, J. R. & Dücker, C. Identification of novel high-affinity substrates of OCT1 using machine learning-guided virtual screening and experimental validation. J. Med. Chem. 64, 2762–2776 (2021).

    CAS  PubMed  Google Scholar 

  16. Kido, Y., Matsson, P. & Giacomini, K. M. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J. Med. Chem. 54, 4548–4558 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neuhoff, S., Ungell, A.-L., Zamora, I. & Artursson, P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm. Res. 20, 1141–1148 (2003).

    CAS  PubMed  Google Scholar 

  18. Shibata, M., Toyoshima, J., Kaneko, Y., Oda, K. & Nishimura, T. A drug–drug interaction study to evaluate the impact of peficitinib on OCT1- and MATE1-mediated transport of metformin in healthy volunteers. Eur. J. Clin. Pharmacol. 76, 1135–1141 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho, S. et al. Rifampin enhances the glucose‐lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin. Pharmacol. Ther. 89, 416–421 (2011).

    CAS  PubMed  Google Scholar 

  20. Koepsell, H. Update on drug–drug interaction at organic cation transporters: mechanisms, clinical impact, and proposal for advanced in vitro testing. Expert Opin. Drug Metab. Toxicol. 17, 635–653 (2021).

    CAS  PubMed  Google Scholar 

  21. Cho, S. K., Kim, C. O., Park, E. S. & Chung, J. Y. Verapamil decreases the glucose‐lowering effect of metformin in healthy volunteers. Br. J. Clin. Pharmacol. 78, 1426–1432 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. European Medicines Agency. Guideline on the investigation of drug interactions. Guid Doc. 44, 59 (2012); https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf

  23. In vitro drug interaction studies—cytochrome P450 enzyme-and transporter-mediated drug interactions guidance for industry. Center for Drug Evaluation and Research, US Food and Drug Administration https://www.fda.gov/media/134582/download (2020).

  24. Meyer, M. J. et al. Amino acids in transmembrane helix 1 confer major functional differences between human and mouse orthologs of the polyspecific membrane transporter OCT1. J. Biol. Chem. 298, 101974 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Popp, C. et al. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol. Pharmacol. 67, 1600–1611 (2005).

    CAS  PubMed  Google Scholar 

  26. Zhang, X., Shirahatti, N. V., Mahadevan, D. & Wright, S. H. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). J. Biol. Chem. 280, 34813–34822 (2005).

    CAS  PubMed  Google Scholar 

  27. Harper, J. N. & Wright, S. H. Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am. J. Physiol. Ren. Physiol. 304, F56–F67 (2013).

    CAS  Google Scholar 

  28. Gorboulev, V., Volk, C., Arndt, P., Akhoundova, A. & Koepsell, H. Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol. Pharmacol. 56, 1254–1261 (1999).

    CAS  PubMed  Google Scholar 

  29. Gorbunov, D. et al. High-affinity cation binding to transporter OCT1 induces movement of Helix 11 and blocks transport after mutations in a modelled interaction domain between two helices. Mol. Pharmacol. 73, 50–61 (2007).

    PubMed  Google Scholar 

  30. Sturm, A. et al. Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. Am. J. Physiol. Ren. Physiol. 293, F767–F779 (2007).

    CAS  Google Scholar 

  31. Pelis, R. M., Zhang, X., Dangprapai, Y. & Wright, S. H. Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2. J. Biol. Chem. 281, 35272–35280 (2006).

    CAS  PubMed  Google Scholar 

  32. Ahlin, G. et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem. 51, 5932–5942 (2008).

    CAS  PubMed  Google Scholar 

  33. Wright, S. H. Molecular and cellular physiology of organic cation transporter 2. Am. J. Physiol. Ren. Physiol. 317, F1669–F1679 (2019).

    CAS  Google Scholar 

  34. Cirri, E. et al. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 7, e40110 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Wright, N. J. & Lee, S.-Y. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat. Struct. Mol. Biol. 26, 599–606 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tu, M. et al. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 311, 225–230 (2013).

    CAS  PubMed  Google Scholar 

  37. Zhang, L. et al. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 51, 913–921 (1997).

    CAS  PubMed  Google Scholar 

  38. Choi, M. K. et al. Effects of tetraalkylammonium compounds with different affinities for organic cation transporters on the pharmacokinetics of metformin. Biopharm. Drug Dispos. 28, 501–510 (2007).

    CAS  PubMed  Google Scholar 

  39. Keller, T. et al. Rat organic cation transporter 1 contains three binding sites for substrate 1-methyl-4-phenylpyridinium per monomer. Mol. Pharmacol. 95, 169–182 (2019).

    CAS  PubMed  Google Scholar 

  40. Quistgaard, E. M., Low, C., Guettou, F. & Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol. 17, 123–132 (2016).

    CAS  PubMed  Google Scholar 

  41. Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakugawa, T. et al. Enantioselective disposition of fexofenadine with the P‐glycoprotein inhibitor verapamil. Br. J. Clin. Pharmacol. 67, 535–540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, D.-H., Chung, J.-H. & Choi, J.-S. Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects: role of P-glycoprotein inhibition by lovastatin. Eur. J. Clin. Pharmacol. 66, 285–290 (2010).

    CAS  PubMed  Google Scholar 

  44. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383. e313 (2021).

    CAS  PubMed  Google Scholar 

  45. Wright, N. J. & Lee, S.-Y. Recent advances on the inhibition of human solute carriers: therapeutic implications and mechanistic insights. Curr. Opin. Struct. Biol. 74, 102378 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Piascik, M. T., Collins, R. & Butler, B. T. Stereoselective and nonstereoselective inhibition exhibited by the enantiomers of verapamil. Can. J. Physiol. Pharmacol. 68, 439–446 (1990).

    CAS  PubMed  Google Scholar 

  47. Eichelbaum, M. Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of l- and d-verapamil examined with a stable isotope technique. Br. J. Clin. Pharm. 58, S805 (2004).

    Google Scholar 

  48. Hanada, K., Ikemi, Y., Kukita, K., Mihara, K. & Ogata, H. Stereoselective first-pass metabolism of verapamil in the small intestine and liver in rats. Drug Metab. Dispos. 36, 2037–2042 (2008).

    CAS  PubMed  Google Scholar 

  49. Gebauer, L., Arul Murugan, N., Jensen, O., Brockmoller, J. & Rafehi, M. Molecular basis for stereoselective transport of fenoterol by the organic cation transporters 1 and 2. Biochem. Pharmacol. 197, 114871 (2022).

    CAS  PubMed  Google Scholar 

  50. Guterres, H. & Im, W. Improving protein–ligand docking results with high-throughput molecular dynamics simulations. J. Chem. Inf. Model. 60, 2189–2198 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guterres, H. et al. CHARMM‐GUI high‐throughput simulator for efficient evaluation of protein–ligand interactions with different force fields. Protein Sci. 31, e4413 (2022).

    CAS  Google Scholar 

  52. Gorboulev, V. et al. Assay conditions influence affinities of rat organic cation transporter 1: analysis of mutagenesis in the modeled outward-facing cleft by measuring effects of substrates and inhibitors on initial uptake. Mol. Pharmacol. 93, 402–415 (2018).

    CAS  PubMed  Google Scholar 

  53. Khanppnavar, B. et al. Structural basis of organic cation transporter-3 inhibition. Nat. Commun. 13, 6714 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    CAS  PubMed  Google Scholar 

  56. Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinform. 72, e108 (2020).

    CAS  Google Scholar 

  57. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS  PubMed  Google Scholar 

  58. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wright, N. J. et al. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature 609, 1056–1062 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Löbel, M. et al. Structural basis for proton coupled cystine transport by cystinosin. Nat. Commun. 13, 1–12 (2022).

    Google Scholar 

  62. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  63. Peck, J. V., Fay, J. F. & Strauss, J. D. High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ 9, 243–252 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, K., Gctf & Real-time, C. T. F. determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  68. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS  PubMed  Google Scholar 

  69. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife https://doi.org/10.7554/eLife.42166 (2018).

  70. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  71. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS  Google Scholar 

  72. Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS  PubMed  Google Scholar 

  73. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  74. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

  75. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    CAS  PubMed  Google Scholar 

  76. Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J. et al. CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. J. Chem. Theory Comput. 15, 775–786 (2018).

    PubMed  Google Scholar 

  78. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS  Google Scholar 

  79. Steinbach, P. J. & Brooks, B. R. New spherical‐cutoff methods for long‐range forces in macromolecular simulation. J. Comput. Chem. 15, 667–683 (1994).

    CAS  Google Scholar 

  80. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    CAS  Google Scholar 

  81. Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).

    CAS  Google Scholar 

  82. Gao, Y. et al. Charmm-gui supports hydrogen mass repartitioning and different protonation states of phosphates in lipopolysaccharides. J. Chem. Inf. Model. 61, 831–839 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS  PubMed  Google Scholar 

  84. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller, B. R. III et al. MMPBSA. py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cryo-EM data were screened and collected at the Duke University Shared Materials Instrumentation Facility (SMIF), the UNC Cryo-EM core facility and the National Institute of Environmental Health Sciences (NIEHS). We thank N. Bhattacharya at SMIF, and J. Strauss of the UNC Cryo-EM Core Facility for assistance with the microscope operation. This research was supported by a National Institutes of Health (R01GM137421 to S.-Y.L. and R01GM138472 to W.I.), the National Institute of Health Intramural Research Program; US National Institutes of Environmental Health Science (ZIC ES103326 to M.J.B.) and a National Science Foundation grant MCB-1810695 (W.I.). DUKE SMIF is affiliated with the North Carolina Research Triangle Nanotechnology Network, which is in part supported by the NSF (ECCS-2025064). The UNC CryoEM core facility is supported by NIH grant P30CA016086.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conducted biochemical preparation, sample freezing, grid screening, data collection, data processing and single particle 3D reconstruction as well as surface expression experiments, N.J.W. performed radiotracer uptake assays, data processing and single particle 3D reconstruction, all under the guidance of S.-Y.L. J.G.F. performed part of radiotracer uptake and surface expression experiments. N.J.W., Y.S. and S.-Y.L. performed model building and refinement. H.G. carried out all MD simulations as well as docking studies under the guidance of W.I. K.J.B. helped with part of cryo-EM sample screening and provided advice on sample freezing under the guidance of M.J.B. N.J.W., Y.S. and S.-Y.L. wrote the paper.

Corresponding author

Correspondence to Seok-Yong Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Cornelius Gati and Mladen V. Tzvetkov for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Consensus mutagenesis, protein biochemistry, and cryo-EM analysis of OCT1CS.

a, FSEC traces showing strong monodisperse peaks for OCT1CS-GFP and OCT2CS-GFP, while WT hOCT1-GFP and WT hOCT2-GFP transfected HEK293T cells did not yield any discernable peak corresponding to target protein. Asterisk indicates target protein peak in FSEC. b, Map of all residues in OCT1CS and OCT2CS that deviate from WT hOCT1. The residues are colored based on their conservation score from MAFFT alignment. Blue spheres indicate mildly changed, while red spheres indicate drastic changes. c, Time-dependent accumulation of 10 nM [3H]-MPP+ in WT hOCT1 and OCT1CS expressing oocytes (n = 3 biologically independent replicates per timepoint). d, Raw uptake values for controls in the OCT1 [14C]-metformin uptake experiments, corresponding to Fig. 1e (n = 3–4 biologically independent replicates, shown with mean ± s.e.m.). e, Raw uptake values for controls in the OCT2 [3H]-MPP+ uptake experiments, corresponding to Fig. 1f (n = 3 biologically independent replicates, shown with mean ± s.e.m.). f, [3H]-MPP+ uptake in oocytes expressing Y36C, F446I, and Y36C/F446I in the OCT1CS-GFP background (n = 3 biologically independent replicates, individual values and mean ± S.E.M; water injected controls used for background correction, OCT1CS uptake signal used for normalization). g, FSEC traces showing expression of selected OCT1CS mutants in HEK293T cells. Asterisk indicates target protein peak in FSEC. h, Representative size-exclusion chromatography trace (left) and SDS-PAGE (right) of purified OCT1CS or OCT2CS samples used for cryo-EM grid preparation. The experiments were repeated independently for >10 times with similar results. Asterisks indicate target protein peak (in SEC) and band (in SDS-PAGE). i, Representative micrograph of a OCT1CS sample. OCT2 CS behaves similarly on cryo-EM grids. j, Representative 2D classes from a OCT1CS dataset. k, Secondary structure topology of OCT1 and OCT2.

Source data

Extended Data Fig. 2 Cryo-EM data processing workflow.

a-d, cryo-EM data processing workflow for apo-OCT1CS, DPH-OCT1CS, VPM-OCT1CS, and MPP+-OCT2CS datasets, respectively.

Extended Data Fig. 3 Cryo-EM data validation.

a, Final cryo-EM reconstructions. b, Fourier-shell correlation for the final reconstruction, generated from cryoSPARC. c, projection orientation distribution map for the final reconstruction, generated from cryoSPARC. d, Map-to-model correlation plots. e, Local Resolution plots. f, cryo-EM maps for secondary structure segments. From left to right are cryo-EM data validations for apo-OCT1CS, DPH-OCT1CS, VPM-OCT1CS, and MPP+-OCT2CS datasets, respectively.

Extended Data Fig. 4 Validation of ligand binding poses with molecular dynamics simulations.

a, Three possible poses for DPH molecule placement based on the cryo-EM reconstruction. b, Final MD frame for 5 replicas of DPH-OCT1CS MD simulations (500 ns) for the three proposed poses, where possibility #1 is more stably bound at the site. c, Two possible poses for S(–)-VPM based on the cryo-EM reconstruction. d, Final MD frame for 5 replicas of VPM-OCT1CS MD simulations (500 ns), for the two proposed poses, where possibility #2 is more stable (r.m.s.d. – root mean square deviation from starting pose). e, Zoom-in view of the cryo-EM map and model of the VPM chiral center. f, Inter-atomic distances between the ionizable nitrogen of VPM or DPH and acidic residues (D474 or E386) during the MD-simulations of drug-bound OCT1CS (scatter plot showing individual values extracted per MD frame, compiled from all 5 replicas per condition, with the black line representing the mean).

Source data

Extended Data Fig. 5 Surface expression of hOCT1-WT, OCT1CS and mutants.

Representative confocal microscopy images showing surface expression of OCT1CS and relevant mutants in Xenopus laevis oocytes used for radiotracer uptake studies. Scale bars represent 200 mm. Similar results were observed in 6–8 additional biological replicates per condition.

Extended Data Fig. 6 Ligand-induced local conformational changes in OCT1CS.

a, Structural overlay of apo-OCT1CS (marine), VPM-OCT1CS (green) and DPH-OCT1CS (yellow), showing that no large conformational changes are present among the three structures. While other residues remain relatively stable, Y36 exhibits considerable rotamer movement among the three structures.

Extended Data Fig. 7 In silico ligand docking.

In-silico docking and short-time scale (50 ns) MD simulations for serotonin, epinephrine, metformin, dopamine, mescaline, norfentanyl, methylnaltrexone, morphine, imipramine and MPP+, respectively. For each ligand, Top MMPBSA scored poses are shown in the large panels, with other candidate poses (under 3 Å ligand r.m.s.d. at the conclusion of the simulation) shown below. Self-docking runs of DPH and VPM shown at top left for validation. PDBs corresponding to all poses shown here are available as Source Data.

Extended Data Fig. 8 Local conformational changes associated with OCT gating.

a, ConSurf plot for OCT2cs and OCT2 homologs. b, Electrostatics surface of outward occluded OCT2, calculated by APBS. c, Concerted local conformational changes in TM2 and 11 leads to extracellular gate formation. d, Local conformational changes in the N-lobe from outward open (blue) to outward occluded (green) conformations.

Extended Data Table 1 MMPBSA scores for top in silico docking poses

Supplementary information

Supplementary Information

Supplementary Fig. 1. Multiple sequence alignment. Multiple sequence alignment of OCT1CS, human OCTs (SLC22A1-3) and representative human OATs (SLC22A7-9). Sequences are aligned using MAFFT57. E386 and D474 (numbering according to hOCT1) positions are highlighted in red and 217, 244, 354 and 446 (numbering according to hOCT1) in green.

Reporting Summary

Peer Review File

Supplementary Data 1

Compressed (.zip) folder containing final MD frame PDB files from all poses from the Docking/MD to OCT1CS. Excel file included in folder containing all file names and pertinent information.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Extended Data Fig. 1

Uncropped gel images for Extended Data Fig. 1h.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig. 4f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, Y., Wright, N.J., Guterres, H. et al. Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2. Nat Struct Mol Biol 30, 1001–1011 (2023). https://doi.org/10.1038/s41594-023-01017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01017-4

  • Springer Nature America, Inc.

This article is cited by

Navigation