Skip to main content
Log in

The developing toolkit of continuous directed evolution

  • Perspective
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Continuous directed evolution methods allow the key steps of evolution—gene diversification, selection, and replication—to proceed in the laboratory with minimal researcher intervention. As a result, continuous evolution can find solutions much more quickly than traditional discrete evolution methods. Continuous evolution also enables the exploration of longer and more numerous evolutionary trajectories, increasing the likelihood of accessing solutions that require many steps through sequence space and greatly facilitating the iterative refinement of selection conditions and targeted mutagenesis strategies. Here we review the historical advances that have expanded continuous evolution from its earliest days as an experimental curiosity to its present state as a powerful and surprisingly general strategy for generating tailor-made biomolecules, and discuss more recent improvements with an eye to the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: An overview of laboratory directed evolution, including major methods for each key step.
Fig. 2: Overview of early in vitro continuous evolution systems.
Fig. 3: Systems for continuous culture.
Fig. 4: Continuous evolution via orthogonal polymerases and reverse transcriptases.
Fig. 5: Phage-assisted continuous evolution (PACE).
Fig. 6: PACE selection strategies.
Fig. 7: Viral evolution of genetically actuating sequences (VEGAS).

Similar content being viewed by others

References

  1. Mills, D. R., Peterson, R. L. & Spiegelman, S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Wright, M. C. & Joyce, G. F. Continuous in vitro evolution of catalytic function. Science 276, 614–617 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. McGinness, K. E., Wright, M. C. & Joyce, G. F. Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem. Biol. 9, 585–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Breaker, R. R., Banerji, A. & Joyce, G. F. Continuous in vitro evolution of bacteriophage RNA polymerase promoters. Biochemistry 33, 11980–11986 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kühne, H. & Joyce, G. F. Continuous in vitro evolution of ribozymes that operate under conditions of extreme pH. J. Mol. Evol. 57, 292–298 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Voytek, S. B. & Joyce, G. F. Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc. Natl Acad. Sci. USA 104, 15288–15293 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuura, T. & Yomo, T. In vitro evolution of proteins. J. Biosci. Bioeng. 101, 449–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Monod, J. La technique de culture continue: theorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950).

    CAS  Google Scholar 

  9. Novick, A. & Szilard, L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc. Natl Acad. Sci. USA 36, 708–719 (1950).

    Article  CAS  PubMed  Google Scholar 

  10. Bryson, V. & Szybalski, W. Microbial selection. Science 116, 45–51 (1952).

    Article  PubMed  Google Scholar 

  11. Larsson, G., Enfors, S. O. & Pham, H. The pH-auxostat as a tool for studying microbial dynamics in continuous fermentation. Biotechnol. Bioeng. 36, 224–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Moser, H. The Dynamics of Bacterial Populations Maintained in the Chemostat. (Washington D.C., Carnegie Institution of Washington, 1958).

  13. Bull, J. J. et al. Exceptional convergent evolution in a virus. Genetics 147, 1497–1507 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Marlière, P. et al. Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed. Engl. 50, 7109–7114 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Toprak, E. et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 44, 101–105 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zamenhof, S. & Eichhorn, H. H. Study of microbial evolution through loss of biosynthetic functions: establishment of “defective” mutants. Nature 216, 456–458 (1967).

    Article  CAS  PubMed  Google Scholar 

  17. Lwoff, A. L’évolution Physiologique: Étude des Pertes de Fonctions chez les Microorganismes. (Paris, Hermann, 1944).

  18. Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).

    Article  Google Scholar 

  19. Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R. & Molineux, I. J. Experimental phylogenetics: generation of a known phylogeny. Science 255, 589–592 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Greener, A., Callahan, M. & Jerpseth, B. An efficient random mutagenesis technique using an E. coli mutator strain. Mol. Biotechnol. 7, 189–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Chou, H. H. & Keasling, J. D. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4, 2595 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Pham, H. L. et al. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 8, 411 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mundhada, H. et al. Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab. Eng. 39, 141–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, R. W. et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 9, 1203 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell 171, 1453–1467.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garst, A. D. et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35, 48–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Yano, T., Oue, S. & Kagamiyama, H. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl Acad. Sci. USA 95, 5511–5515 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1957.e13 (2018).

  32. Fabret, C. et al. Efficient gene targeted random mutagenesis in genetically stable Escherichia coli strains. Nucleic Acids Res. 28, E95 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Camps, M., Naukkarinen, J., Johnson, B. P. & Loeb, L. A. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc. Natl Acad. Sci. USA 100, 9727–9732 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun. 7, 13051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. ACS Synth. Biol. 7, 2600–2611 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Romanini, D. W., Peralta-Yahya, P., Mondol, V. & Cornish, V. W. A heritable recombination system for synthetic Darwinian evolution in yeast. ACS Synth. Biol. 1, 602–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Finney-Manchester, S. P. & Maheshri, N. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, e99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore, C. L., Papa, L. J. III & Shoulders, M. D. A processive protein chimera introduces mutations across defined DNA regions in vivo. J. Am. Chem. Soc. 140, 11560–11564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smeal, S. W., Schmitt, M. A., Pereira, R. R., Prasad, A. & Fisk, J. D. Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500, 259–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dickinson, B. C., Packer, M. S., Badran, A. H. & Liu, D. R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat. Commun. 8, 956 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, T., Badran, A. H., Huang, T. P. & Liu, D. R. Continuous directed evolution of proteins with improved soluble expression. Nat. Chem. Biol. 14, 972–980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253–1260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hubbard, B. P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 12, 939–942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller, S.M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. (2020).

  53. Thuronyi, B.W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. English, J. G. et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178, 748–761.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  58. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Wong, J. T. Membership mutation of the genetic code: loss of fitness by tryptophan. Proc. Natl Acad. Sci. USA 80, 6303–6306 (1983).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, L. & Schultz, P. G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Monk, J. W. et al. Rapid and inexpensive evaluation of nonstandard amino acid incorporation in Escherichia coli. ACS Synth. Biol. 6, 45–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Hammerling, M. J. et al. Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nat. Chem. Biol. 10, 178–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    Article  PubMed  CAS  Google Scholar 

  64. Mayer, C., Dulson, C., Reddem, E., Thunnissen, A. W. H. & Roelfes, G. Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid. Angew. Chem. Int. Ed. Engl. 58, 2083–2087 (2019).

    Article  CAS  Google Scholar 

  65. Kanigowska, P., Shen, Y., Zheng, Y., Rosser, S. & Cai, Y. Smart DNA fabrication using sound waves: applying acoustic dispensing technologies to synthetic biology. J. Lab. Autom. 21, 49–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Terekhov, S. S. et al. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl Acad. Sci. USA 114, 2550–2555 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Callens, C. et al. A multiplex culture system for the long-term growth of fission yeast cells. Yeast 34, 343–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J. & Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. 4, 32–38 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.R.L. gratefully acknowledges support from NIH U01 AI142756 (D.R.L.), RM1 HG009490 (D.R.L.), R01 EB022376 (D.R.L.), and R35 GM118062 (D.R.L.); and HHMI (D.R.L.). We thank A. Badran and K. Zhao for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

D.R.L. is a consultant and co-founder of Prime Medicine, Beam Therapeutics, Pairwise Plants, and Editas Medicine, companies that use genome editing. Complete disclosures are available at https://liugroup.us.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, M.S., Podracky, C.J. & Liu, D.R. The developing toolkit of continuous directed evolution. Nat Chem Biol 16, 610–619 (2020). https://doi.org/10.1038/s41589-020-0532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0532-y

  • Springer Nature America, Inc.

This article is cited by

Navigation