Skip to main content

Probabilistic Methods in Directed Evolution: Library Size, Mutation Rate, and Diversity

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

Directed evolution has emerged as an important tool for engineering proteins with improved or novel properties. Because of their inherent reliance on randomness, directed evolution protocols are amenable to probabilistic modeling and analysis. This chapter summarizes and reviews in a nonmathematical way some of the probabilistic works related to directed evolution, with particular focus on three of the most widely used methods: saturation mutagenesis, error-prone PCR, and in vitro recombination. The ultimate aim is to provide the reader with practical information to guide the planning and design of directed evolution studies. Importantly, the applications and locations of freely available computational resources to assist with this process are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14(4):458

    Article  CAS  PubMed  Google Scholar 

  2. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95(22):12809–12813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Reetz MT, Zonta A, Schimossek K, Jaeger K-E, Liebeton K (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed 36(24):2830–2832

    Article  CAS  Google Scholar 

  4. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97(20):10701–10705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Patrick WM, Firth AE (2005) Strategies and computational tools for improving randomized protein libraries. Biomol Eng 22(4):105–112

    Article  CAS  PubMed  Google Scholar 

  6. Hughes MD, Nagel DA, Santos AF, Sutherland AJ, Hine AV (2003) Removing the redundancy from randomised gene libraries. J Mol Biol 331(5):973–979

    Article  CAS  PubMed  Google Scholar 

  7. Tang L, Gao H, Zhu X, Wang X, Zhou M, Jiang R (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52(3):149–158

    CAS  PubMed  Google Scholar 

  8. Kille S, Acevedo-Rocha CG, Parra LP, Zhang Z-G, Opperman DJ, Reetz MT, Acevedo JP (2013) Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol 2(2):83–92

    Article  CAS  PubMed  Google Scholar 

  9. Tomandl D, Schober A, Schwienhorst A (1997) Optimizing doped libraries by using genetic algorithms. J Comput Aided Mol Des 11(1):29–38

    Article  CAS  PubMed  Google Scholar 

  10. Jensen LJ, Andersen KV, Svendsen A, Kretzschmar T (1998) Scoring functions for computational algorithms applicable to the design of spiked oligonucleotides. Nucleic Acids Res 26(3):697–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wolf E, Kim PS (1999) Combinatorial codons: a computer program to approximate amino acid probabilities with biased nucleotide usage. Protein Sci 8(3):680–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32(4):1448–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9(11):1797–1804

    Article  CAS  PubMed  Google Scholar 

  14. Feller W (1971) An introduction to probability theory and its applications, vol 2. Wiley, New York

    Google Scholar 

  15. Patrick WM, Firth AE, Blackburn JM (2003) User‐friendly algorithms for estimating completeness and diversity in randomized protein‐encoding libraries. Protein Eng 16(6):451–457

    Article  CAS  PubMed  Google Scholar 

  16. Bosley AD, Ostermeier M (2005) Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol Eng 22(1–3):57–61

    Article  CAS  PubMed  Google Scholar 

  17. Firth AE, Patrick WM (2008) GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res 36(suppl 2):W281–W285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nov Y (2012) When second best is good enough: another probabilistic look at saturation mutagenesis. Appl Environ Microbiol 78(1):258–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Firth AE, Patrick WM (2005) Statistics of protein library construction. Bioinformatics 21(15):3314–3315

    Article  CAS  PubMed  Google Scholar 

  20. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903

    Article  CAS  PubMed  Google Scholar 

  21. Kong Y (2009) Calculating complexity of large randomized libraries. J Theor Biol 259(3):641–645

    Article  CAS  PubMed  Google Scholar 

  22. Grimmett GR, Stirzaker DR (2001) Probability and random processes. Oxford University Press, Oxford

    Google Scholar 

  23. Piau D (2004) Mutation–replication statistics of polymerase chain reactions. J Comput Biol 9(6):831–847

    Article  Google Scholar 

  24. Sun F (1995) The polymerase chain reaction and branching processes. J Comput Biol 2(1):63–86

    Article  CAS  PubMed  Google Scholar 

  25. Wang D, Zhao C, Cheng R, Sun F (2000) Estimation of the mutation rate during error-prone polymerase chain reaction. J Comput Biol 7(1–2):143–158

    Article  CAS  PubMed  Google Scholar 

  26. Weiss G, von Haeseler A (1995) Modeling the polymerase chain reaction. J Comput Biol 2(1):49–61

    Article  CAS  PubMed  Google Scholar 

  27. Moore GL, Maranas CD (2000) Modeling DNA mutation and recombination for directed evolution experiments. J Theor Biol 205(3):483–503

    Article  CAS  PubMed  Google Scholar 

  28. Shuster V, Fishman A (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol 17(4):188–200

    Article  CAS  PubMed  Google Scholar 

  29. Drummond DA, Iverson BL, Georgiou G, Arnold FH (2005) Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 350(4):806–816

    Article  CAS  PubMed  Google Scholar 

  30. Volles MJ, Lansbury PT (2005) A computer program for the estimation of protein and nucleic acid sequence diversity in random point mutagenesis libraries. Nucleic Acids Res 33(11):3667–3677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Verma R, Schwaneberg U, Roccatano D (2012) MAP2.03D: a sequence/structure based server for protein engineering. ACS Synth Biol 1(4):139–150

    Article  CAS  PubMed  Google Scholar 

  32. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91(22):10747–10751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16(3):258–261

    Article  CAS  PubMed  Google Scholar 

  34. Moore JC, Jin H-M, Kuchner O, Arnold FH (1997) Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol 272(3):336–347

    Article  CAS  PubMed  Google Scholar 

  35. Sun F (1999) Modeling DNA shuffling. J Comput Biol 6(1):77–90

    Article  CAS  PubMed  Google Scholar 

  36. Moore GL, Maranas CD, Gutshall KR, Brenchley JE (2000) Modeling and optimization of DNA recombination. Comput Chem Eng 24(2–7):693–699

    Article  CAS  Google Scholar 

  37. Moore GL, Maranas CD, Lutz S, Benkovic SJ (2001) Predicting crossover generation in DNA shuffling. Proc Natl Acad Sci U S A 98(6):3226–3231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hiraga K, Arnold FH (2003) General method for sequence-independent site-directed chimeragenesis. J Mol Biol 330(2):287–296

    Article  CAS  PubMed  Google Scholar 

  39. Herman A, Tawfik DS (2007) Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng Des Sel 20(5):219–226

    Article  CAS  PubMed  Google Scholar 

  40. Wong TS, Tee KL, Hauer B, Schwaneberg U (2004) Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 32(3):e26

    Article  PubMed Central  PubMed  Google Scholar 

  41. Airaksinen A, Hovi T (1998) Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis. Nucleic Acids Res 26(2):576–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vanhercke T, Ampe C, Tirry L, Denolf P (2005) Reducing mutational bias in random protein libraries. Anal Biochem 339(1):9–14

    Article  CAS  PubMed  Google Scholar 

  43. Denault M, Pelletier JN (2007) Protein library design and screening: working out the probabilities. In: Arndt KM, Müller KM (eds) Protein engineering protocols, vol 352, Methods in molecular biology. Humana Press Inc., Totowa, NJ

    Google Scholar 

  44. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25(3):338–344

    Article  CAS  PubMed  Google Scholar 

  45. Nov Y, Wein LM (2005) Modeling and analysis of protein design under resource constraints. J Comput Biol 12(2):247–282

    Article  CAS  PubMed  Google Scholar 

  46. Barak Y, Nov Y, Ackerley DF, Matin A (2007) Enzyme improvement in the absence of structural knowledge: a novel statistical approach. ISME J 2(2):171–179

    Article  PubMed  Google Scholar 

  47. Brouk M, Nov Y, Fishman A (2010) Improving biocatalyst performance by integrating statistical methods into protein engineering. Appl Environ Microbiol 76(19):6397–6403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Nov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nov, Y. (2014). Probabilistic Methods in Directed Evolution: Library Size, Mutation Rate, and Diversity. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics