Skip to main content

Advertisement

Log in

Exercise metabolism and adaptation in skeletal muscle

  • Review Article
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

This article has been updated

Abstract

Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Skeletal muscle fibre ultrastructure.
Fig. 2: Skeletal muscle metabolism during higher-intensity exercise.
Fig. 3: Molecular responses to acute exercise and exercise training.

Similar content being viewed by others

Change history

  • 21 July 2023

    In the version of this article originally published, in the Glossary definition for ‘Adrenoceptor’, ‘Transmembrane G-protein-coupled adrenergic receptors’ now reads as ‘Adrenergic transmembrane G-protein-coupled receptors’. In the figure legends for Figs. 1a and 2c, citations to the section ‘Acute exercise metabolism in skeletal muscle’ mistakenly named the section as ‘Acute exercise muscle metabolism’. Under the ‘Oxygen-dependent exercise metabolism’ subsection, in the third sentence of the first paragraph, H2O2 was incorrectly defined as ‘superoxide’ rather than ‘hydrogen peroxide’. In the same subsection, in the paragraph beginning ‘Muscle lipid metabolism…’, the ‘post-exercise plasma metabolome’ was initially stated to be the ‘post-exercise serum metabolome’ in the second sentence. Furthermore, some proteins in the article were missing mentions of their standard names and/or definitions from UniProt, which have now been added: ‘SLC25A12’ has been added for ‘AGE’, ‘mitochondrial 2-oxoglutarate/malate carrier, M2OM’ for ‘MOE’, and ‘AATM’ for ‘mAspAT’. In addition, a typographical error in the sentence beginning ‘This occurs through a muscle…’ in Box 4 caused ‘PPARα/PPARδ’ to read as ‘PPAα/δ’. Similarly, in the last paragraph of the ‘The post-exercise transcriptome’ subsection, ‘45S pre-rRNA’ was incorrectly written as ‘pre-45S rRNA’ in the second sentence. Lastly, the supplementary file has been exchanged with an updated version showing corrected positioning of myosin headgroups in their relaxed conformations in Supplementary Fig. 2. The updates are made in the HTML and PDF versions of the article.

References

  1. Bilet, L. et al. One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension. Diabetologia 63, 1211–1222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergouignan, A. et al. Effect of contrasted levels of habitual physical activity on metabolic flexibility. J. Appl. Physiol. 114, 371–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Kivimaki, M. et al. Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. Brit. Med. J. 365, l1495 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, D. et al. Leisure-time physical activity and incident metabolic syndrome: a systematic review and dose-response meta-analysis of cohort studies. Metabolism 75, 36–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Millard, L. A. C., Tilling, K., Gaunt, T. R., Carslake, D. & Lawlor, D. A. Association of physical activity intensity and bout length with mortality: an observational study of 79,503 UK Biobank participants. PLoS Med. 18, e1003757 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. D’Hulst, G., Masschelein, E. & De Bock, K. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. Mol. Metab. 66, 101615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goodyear, L. J. et al. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J. Appl. Physiol. 68, 193–198 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Burd, N. A. et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 141, 568–573 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Sjoberg, K. A. et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes 66, 1501–1510 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. McConell, G. K. et al. Insulin-induced membrane permeability to glucose in human muscles at rest and following exercise. J. Physiol. 598, 303–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Hostrup, M., Onslev, J., Jacobson, G. A., Wilson, R. & Bangsbo, J. Chronic β2-adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men. J. Physiol. 596, 231–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, M. M. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017). This study provides a thorough analysis of exercise adaptation at several -omics levels in human skeletal muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman, M. A. et al. Skeletal muscle transcriptomic comparison between long-term trained and untrained men and women. Cell Rep. 31, 107808 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Deshmukh, A. S. et al. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat. Commun. 12, 304 (2021). This study highlights notable shared and distinct adaptations in the proteomes of type I and type II fibres after a period of endurance training.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Granata, C. et al. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nat. Commun. 12, 7056 (2021). This study interrogates the muscle mitochondrial proteome at multiple time points during a periodized high-intensity training intervention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laukkanen, J. A. et al. Long-term change in cardiorespiratory fitness and all-cause mortality: a population-based follow-up study. Mayo Clin. Proc. 91, 1183–1188 (2016).

    Article  PubMed  Google Scholar 

  17. García-Hermoso, A. et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 99, 2100–2113.e5 (2018).

    Article  PubMed  Google Scholar 

  18. Coleman, C. J., McDonough, D. J., Pope, Z. C. & Pope, C. A. Dose-response association of aerobic and muscle-strengthening physical activity with mortality: a national cohort study of 416 420 US adults. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2022-105519 (2022).

    Article  PubMed  Google Scholar 

  19. Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e16 (2020). This study is a multi-omics analysis of human plasma and peripheral blood mononuclear cells at multiple time points across a 1-h recovery period immediately following a standardized exercise bout.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sato, S. et al. Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab. 34, 329–345.e8 (2022). In this study, mass spectrometry-based metabolomics is used to characterize time-of-day differences in metabolic programming in several mouse tissues in response to an acute bout of exercise, including the net uptake and release of metabolites in hindlimb muscles and liver.

    Article  CAS  PubMed  Google Scholar 

  21. Murgia, M. et al. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skelet. Muscle 11, 24 (2021). This study interrogates the proteome of single muscle fibres from young, healthy individuals and provides a useful resource for basal proteomic comparisons between type I and type II fibres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bloemberg, D. & Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE 7, e35273 (2012). This paper provides a valuable resource for myosin fibre type and enzymatic profile comparisons, and identifies notable differences between muscles and species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simoneau, J. A. & Bouchard, C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol. 257, E567–E572 (1989).

    CAS  PubMed  Google Scholar 

  24. Pellegrino, M. A. et al. Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J. Physiol. 546, 677–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R. & Reggiani, C. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J. Electromyogr. Kinesiol. 9, 87–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Dos Santos, M. et al. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat. Commun. 11, 5102 (2020). This is one of the first studies to perform single myonuclear RNA-sequencing, revealing heterogeneity between myonuclei within a given muscle fibre.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dos Santos, M. et al. A fast myosin super enhancer dictates muscle fiber phenotype through competitive interactions with myosin genes. Nat. Commun. 13, 1039 (2022). This study uses a ‘rainbow’ transgenic mouse model of the fast-type myosin locus to determine that competitive promoter–super enhancer interactions govern fast-twitch myosin isoform expression in skeletal muscle.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roman, W. et al. Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nat. Cell Biol. 19, 1189–1201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen, Y. et al. Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. iScience 24, 102838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, M. et al. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat. Commun. 11, 6375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Ercole, C. et al. Spatially resolved transcriptomics reveals innervation-responsive functional clusters in skeletal muscle. Cell Rep. 41, 111861 (2022).

    Article  PubMed  Google Scholar 

  32. Battey, E. et al. Myonuclear alterations associated with exercise are independent of age in humans. J. Physiol. https://doi.org/10.1113/JP284128 (2023).

    Article  PubMed  Google Scholar 

  33. Viggars, M. R. et al. Adaptation of the transcriptional response to resistance exercise over 4 weeks of daily training. FASEB J. 37, e22686 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Lexell, J., Taylor, C. C. & Sjostrom, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84, 275–294 (1988). This classic study establishes fibre type differences in human skeletal muscle during healthy ageing, thereby providing insights on the aetiology of sarcopenia.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen, J., Holmberg, H. C., Schroder, H. D., Saltin, B. & Ortenblad, N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J. Physiol. 589, 2871–2885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murgia, M. et al. Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep. 19, 2396–2409 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, L. et al. Spatial metabolomics reveals skeletal myofiber subtypes. Sci. Adv. 9, eadd0455 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Medler, S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. J. Exp. Biol. 222, jeb200832 (2019).

    Article  PubMed  Google Scholar 

  39. Horwath, O. et al. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J. Appl. Physiol. 131, 158–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Murach, K. A. et al. Fiber typing human skeletal muscle with fluorescent immunohistochemistry. J. Appl. Physiol. 127, 1632–1639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bathgate, K. E. et al. Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. Eur. J. Appl. Physiol. 118, 2097–2110 (2018). This study of monozygotic twins suggests that fibre type plasticity in response to lifelong endurance training is greater than previously appreciated.

    Article  CAS  PubMed  Google Scholar 

  42. Malisoux, L., Francaux, M., Nielens, H. & Theisen, D. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 100, 771–779 (2006).

    Article  PubMed  Google Scholar 

  43. Sakakibara, I., Santolini, M., Ferry, A., Hakim, V. & Maire, P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 10, e1004386 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Trappe, S. et al. Single muscle fiber adaptations with marathon training. J. Appl. Physiol. 101, 721–727 (2006).

    Article  PubMed  Google Scholar 

  45. Williamson, D. L., Gallagher, P. M., Carroll, C. C., Raue, U. & Trappe, S. W. Reduction in hybrid single muscle fiber proportions with resistance training in humans. J. Appl. Physiol. 91, 1955–1961 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Long, K. et al. Identification of enhancers responsible for the coordinated expression of myosin heavy chain isoforms in skeletal muscle. BMC Genomics 23, 519 (2022). This study, published shortly after Dos Santos et al. (2022), also identifies the fast-myosin super enhancer, as well as enhancers of slow-type myosin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balagopal, P., Schimke, J. C., Ades, P., Adey, D. & Nair, K. S. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am. J. Physiol. Endocrinol. Metab. 280, E203–E208 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kuhnen, G. et al. Genes whose gain or loss of function changes type 1, 2A, 2X, or 2B muscle fibre proportions in mice — a systematic review. Int. J. Mol. Sci. 23, 12933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Street, S. F. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell. Physiol. 114, 346–364 (1983).

    Article  CAS  PubMed  Google Scholar 

  51. Willingham, T. B., Kim, Y., Lindberg, E., Bleck, C. K. E. & Glancy, B. The unified myofibrillar matrix for force generation in muscle. Nat. Commun. 11, 3722 (2020). The microscopic analysis of muscle myofibrils in this study provides a new paradigm for the organization of muscle contractile apparatus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ajayi, P. T. et al. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat. Commun. 13, 2661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katti, P. et al. Mitochondrial network configuration influences sarcomere and myosin filament structure in striated muscles. Nat. Commun. 13, 6058 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krustrup, P., Ferguson, R. A., Kjaer, M. & Bangsbo, J. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J. Physiol. 549, 255–269 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zagatto, A. M. et al. Impacts of high-intensity exercise on the metabolomics profile of human skeletal muscle tissue. Scand. J. Med. Sci. Sports 32, 402–413 (2022). This study is an analysis of the immediate post-exercise skeletal muscle metabolome in response to an exhaustive bout of high-intensity cycling.

    Article  PubMed  Google Scholar 

  56. Bleck, C. K. E., Kim, Y., Willingham, T. B. & Glancy, B. Subcellular connectomic analyses of energy networks in striated muscle. Nat. Commun. 9, 5111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Glancy, B. et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523, 617–620 (2015). This work advances the understanding of how membrane potential is dispersed across the mitochondrial reticulum to facilitate efficient ATP distribution in muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glancy, B. et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 19, 487–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vincent, A. E. et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 26, 996–1009.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caffrey, B. J. et al. Semi-automated 3D segmentation of human skeletal muscle using focused ion beam-scanning electron microscopic images. J. Struct. Biol. 207, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nielsen, J. et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 595, 2839–2847 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Hentila, J. et al. Autophagy is induced by resistance exercise in young men, but unfolded protein response is induced regardless of age. Acta Physiol. 224, e13069 (2018).

    Article  CAS  Google Scholar 

  66. Heymsfield, S. B. et al. Human energy expenditure: advances in organ-tissue prediction models. Obes. Rev. 19, 1177–1188 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Phung, L. A., Foster, A. D., Miller, M. S., Lowe, D. A. & Thomas, D. D. Super-relaxed state of myosin in human skeletal muscle is fiber-type dependent. Am. J. Physiol. Cell Physiol. 319, C1158–C1162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linari, M. et al. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528, 276–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Gaitanos, G. C., Williams, C., Boobis, L. H. & Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 75, 712–719 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Parolin, M. L. et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 277, E890–E900 (1999).

    CAS  PubMed  Google Scholar 

  71. Romijn, J. A. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380–E391 (1993).

    CAS  PubMed  Google Scholar 

  72. van Loon, L. J., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. & Wagenmakers, A. J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 536, 295–304 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Duchateau, J. & Enoka, R. M. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res. 1409, 42–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Stienen, G. J., Kiers, J. L., Bottinelli, R. & Reggiani, C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J. Physiol. 493, 299–307 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greenhaff, P. L. et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 478, 149–155 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Koh, H. E., Nielsen, J., Saltin, B., Holmberg, H. C. & Ortenblad, N. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise. J. Physiol. 595, 5781–5795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. de Almeida, M. E. et al. Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. Am. J. Physiol. Cell Physiol. 324, C39–C57 (2023).

    Article  PubMed  Google Scholar 

  78. Daemen, S. et al. Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete’s paradox. Mol. Metab. 17, 71–81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brooks, G. A. & Mercier, J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J. Appl. Physiol. 76, 2253–2261 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Wust, R. C. et al. Kinetic control of oxygen consumption during contractions in self-perfused skeletal muscle. J. Physiol. 589, 3995–4009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferguson, B. S. et al. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 118, 691–728 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Wescott, A. P., Kao, J. P. Y., Lederer, W. J. & Boyman, L. Voltage-energized calcium-sensitive ATP production by mitochondria. Nat. Metab. 1, 975–984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seiler, S. E. et al. Carnitine acetyltransferase mitigates metabolic inertia and muscle fatigue during exercise. Cell Metab. 22, 65–76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mancilla, R. F. et al. Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. JCI Insight 8, e163855 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Timmons, J. A. et al. Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise. J. Clin. Invest. 101, 79–85 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh, B. et al. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 537, 971–978 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roman, B. B., Meyer, R. A. & Wiseman, R. W. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Am. J. Physiol. Cell Physiol. 283, C1776–C1783 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Katz, A., Broberg, S., Sahlin, K. & Wahren, J. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251, E65–E70 (1986).

    CAS  PubMed  Google Scholar 

  89. Katz, A. A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122, 1751–1772 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Blazev, R. et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 34, 1561–1577 e1569 (2022). Building on work from Hoffman et al. (2015), this study compares the phosphoproteomic impact of an acute bout of endurance, resistance or sprinting exercise across a 3-h post-exercise recovery period.

    Article  CAS  PubMed  Google Scholar 

  91. Watt, M. J. et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500–E508 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Richter, E. A., Ruderman, N. B., Gavras, H., Belur, E. R. & Galbo, H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am. J. Physiol. 242, E25–E32 (1982).

    CAS  PubMed  Google Scholar 

  93. Hureau, T. J. et al. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: a 31P-MRS study. J. Physiol. 600, 3069–3081 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Cheng, A. J., Place, N. & Westerblad, H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb. Perspect. Med. 8, a029710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L. & Gladden, L. B. Lactate is always the end product of glycolysis. Front. Neurosci. 9, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hokken, R. et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol. 231, e13561 (2021).

    Article  CAS  Google Scholar 

  97. Vigh-Larsen, J. F. et al. Fibre type- and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J. Physiol. 600, 4713–4730 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Sidhu, S. K. et al. Fatigue-related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. J. Physiol. 596, 4789–4801 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ducrocq, G. P. & Blain, G. M. Relationship between neuromuscular fatigue, muscle activation and the work done above the critical power during severe-intensity exercise. Exp. Physiol. 107, 312–325 (2022).

    Article  PubMed  Google Scholar 

  100. Goncalves, R. L., Quinlan, C. L., Perevoshchikova, I. V., Hey-Mogensen, M. & Brand, M. D. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290, 209–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Henriquez-Olguin, C. et al. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat. Commun. 10, 4623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sakellariou, G. K. et al. Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid. Redox Signal. 18, 603–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, Q. A. et al. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc. Natl Acad. Sci. USA 108, 16098–16103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xirouchaki, C. E. et al. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Sci. Adv. 7, eabl4988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bouviere, J. et al. Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants 10, 537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665–8670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clifford, T., Jeffries, O., Stevenson, E. J. & Davies, K. A. B. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 60, 3669–3679 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Gonzalez, J. T. et al. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am. J. Physiol. Endocrinol. Metab. 309, E1032–E1039 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Vincent, M. A. et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am. J. Physiol. Endocrinol. Metab. 290, E1191–E1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. MacLean, D. A., Bangsbo, J. & Saltin, B. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J. Appl. Physiol. 87, 1483–1490 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ryder, J. W. et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J. 13, 2246–2256 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Sylow, L. et al. Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise. Diabetes 66, 1548–1559 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Kjobsted, R. et al. AMPK and TBC1D1 regulate muscle glucose uptake after, but not during, exercise and contraction. Diabetes 68, 1427–1440 (2019).

    Article  PubMed  Google Scholar 

  116. Kjobsted, R. et al. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 66, 598–612 (2017).

    Article  PubMed  Google Scholar 

  117. Fritzen, A. M. et al. 5′-AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J. Physiol. 593, 4765–4780 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ouyang, Q. et al. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev. Cell 58, 289–305.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Glancy, B. et al. Mitochondrial lactate metabolism: history and implications for exercise and disease. J. Physiol. 599, 863–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Rothschild, J. A., Kilding, A. E., Stewart, T. & Plews, D. J. Factors influencing substrate oxidation during submaximal cycling: a modelling analysis. Sports Med. 52, 2775–2795 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. King, A., Helms, E., Zinn, C. & Jukic, I. The ergogenic effects of acute carbohydrate feeding on resistance exercise performance: a systematic review and meta-analysis. Sports Med. 52, 2691–2712 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hartley, C., Carr, A., Bowe, S. J., Bredie, W. L. P. & Keast, R. S. J. Maltodextrin-based carbohydrate oral rinsing and exercise performance: systematic review and meta-analysis. Sports Med. 52, 1833–1862 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gant, N., Stinear, C. M. & Byblow, W. D. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 1350, 151–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Morville, T., Sahl, R. E., Moritz, T., Helge, J. W. & Clemmensen, C. Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Rep. 33, 108554 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Alsted, T. J. et al. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle. J. Physiol. 591, 5141–5155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dube, J. J. et al. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice. Am. J. Physiol. Endocrinol. Metab. 308, E879–E890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Watt, M. J., Heigenhauser, G. J. & Spriet, L. L. Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle. J. Physiol. 547, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Donsmark, M., Langfort, J., Holm, C., Ploug, T. & Galbo, H. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle. Biochem. Biophys. Res. Commun. 316, 867–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Prats, C. et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J. Lipid Res. 47, 2392–2399 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Stokie, J. R., Abbott, G., Howlett, K. F., Hamilton, D. L. & Shaw, C. S. Intramuscular lipid utilization during exercise: a systematic review, meta-analysis, and meta-regression. J. Appl. Physiol. 134, 581–592 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Ghafouri, K. et al. Moderate exercise increases affinity of large very low-density lipoproteins for hydrolysis by lipoprotein lipase. J. Clin. Endocrinol. Metab. 100, 2205–2213 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Jain, S. S. et al. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Lett. 583, 2294–2300 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Nickerson, J. G. et al. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J. Biol. Chem. 284, 16522–16530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jeppesen, J. et al. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. J. Lipid Res. 52, 699–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Abbott, M. J., Edelman, A. M. & Turcotte, L. P. CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1724–R1732 (2009).

    Article  PubMed  Google Scholar 

  136. Turcotte, L. P., Raney, M. A. & Todd, M. K. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol. Scand. 184, 131–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Holloway, G. P. et al. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. J. Physiol. 582, 393–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sacchetti, M., Saltin, B., Osada, T. & van Hall, G. Intramuscular fatty acid metabolism in contracting and non-contracting human skeletal muscle. J. Physiol. 540, 387–395 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hall, A. M., Wiczer, B. M., Herrmann, T., Stremmel, W. & Bernlohr, D. A. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J. Biol. Chem. 280, 11948–11954 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Li, L. O. et al. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 64, 23–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Chen, S., Zhou, L., Sun, J., Qu, Y. & Chen, M. The role of cAMP-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondria content increase in mice. Front. Physiol. 12, 709135 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Constantin-Teodosiu, D., Howell, S. & Greenhaff, P. L. Carnitine metabolism in human muscle fiber types during submaximal dynamic exercise. J. Appl. Physiol. 80, 1061–1064 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Hostrup, M. et al. High-intensity interval training remodels the proteome and acetylome of human skeletal muscle. eLife 11, e69802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Adamovich, Y. et al. Clock proteins and training modify exercise capacity in a daytime-dependent manner. Proc. Natl Acad. Sci. USA 118, e2101115118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bano-Otalora, B. et al. Bright daytime light enhances circadian amplitude in a diurnal mammal. Proc. Natl Acad. Sci. USA 118, e2100094118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Martin, R. A., Viggars, M. R. & Esser, K. A. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat. Rev. Endocrinol. https://doi.org/10.1038/s41574-023-00805-8 (2023).

    Article  PubMed  Google Scholar 

  147. Dyar, K. A. et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol. Metab. 3, 29–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Dyar, K. A. et al. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol. 16, e2005886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hodge, B. A. et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet. Muscle 5, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Harfmann, B. D. et al. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet. Muscle 6, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Thomas, J. M. et al. Circadian rhythm phase shifts caused by timed exercise vary with chronotype. JCI Insight 5, e134270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sun, S. et al. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body. Innovation 4, 100380 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Small, L. et al. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J. Physiol. 598, 5739–5752 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Zambon, A. C. et al. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 4, R61 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dyar, K. A. et al. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol. Metab. 4, 823–833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gabriel, B. M. & Zierath, J. R. Circadian rhythms and exercise — re-setting the clock in metabolic disease. Nat. Rev. Endocrinol. 15, 197–206 (2019).

    Article  PubMed  Google Scholar 

  157. Harmsen, J. F. et al. Circadian misalignment disturbs the skeletal muscle lipidome in healthy young men. FASEB J. 35, e21611 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Wefers, J. et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc. Natl Acad. Sci. USA 115, 7789–7794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Morris, C. J., Purvis, T. E., Hu, K. & Scheer, F. A. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl Acad. Sci. USA 113, E1402–E1411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Saner, N. J. et al. Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms. Mol. Metab. 43, 101110 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Sato, S. et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab. 30, 92–110.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Mancilla, R. et al. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol. Rep. 8, e14669 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. van der Velde, J. et al. Timing of physical activity in relation to liver fat content and insulin resistance. Diabetologia 66, 461–471 (2023).

    Article  PubMed  Google Scholar 

  164. Savikj, M. et al. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia 62, 233–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Feng, H. et al. Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. Nat. Commun. 14, 930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fischer, D., Lombardi, D. A., Marucci-Wellman, H. & Roenneberg, T. Chronotypes in the US — influence of age and sex. PLoS ONE 12, e0178782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Amar, D. et al. Time trajectories in the transcriptomic response to exercise — a meta-analysis. Nat. Commun. 12, 3471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pillon, N. J. et al. Distinctive exercise-induced inflammatory response and exerkine induction in skeletal muscle of people with type 2 diabetes. Sci. Adv. 8, eabo3192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Makhnovskii, P. A. et al. Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle. Hum. Genomics 16, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015). This seminal study investigates the exercise-induced human muscle phosphoproteome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nelson, M. E. et al. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 38, e102578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. You, J. S. et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J. 33, 4021–4034 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. You, J. S. et al. A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Sci. Signal. 11, eaao6847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Song, Z. et al. Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci. Rep. 7, 5028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hodson, N., Mazzulla, M., Holowaty, M. N. H., Kumbhare, D. & Moore, D. R. RPS6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am. J. Physiol. Cell Physiol. 322, C94–C110 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Abou Sawan, S. et al. Trained integrated postexercise myofibrillar protein synthesis rates correlate with hypertrophy in young males and females. Med. Sci. Sports Exerc. 54, 953–964 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Needham, E. J. et al. Personalized phosphoproteomics identifies functional signaling. Nat. Biotechnol. 40, 576–584 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Steinert, N. D. et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 34, 108796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nordgaard, C. et al. ZAKβ is activated by cellular compression and mediates contraction-induced MAP kinase signaling in skeletal muscle. EMBO J. 41, e111650 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. West, D. W. et al. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. J. Physiol. 594, 453–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Lessard, S. J. et al. JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat. Commun. 9, 3030 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. MacKenzie, M. G., Hamilton, D. L., Pepin, M., Patton, A. & Baar, K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS ONE 8, e68743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020). This meta-analysis curates an extensive (and frequently updated) library of the skeletal muscle transcriptomic response to exercise across human demographics and exercise modalities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schumann, M. et al. Compatibility of concurrent aerobic and strength training for skeletal muscle size and function: an updated systematic review and meta-analysis. Sports Med. 52, 601–612 (2022).

    Article  PubMed  Google Scholar 

  185. Lundberg, T. R., Feuerbacher, J. F., Sunkeler, M. & Schumann, M. The effects of concurrent aerobic and strength training on muscle fiber hypertrophy: a systematic review and meta-analysis. Sports Med. 52, 2391–2403 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kaiser, M. S. et al. Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis. Commun. Biol. 5, 1141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Drake, J. C. et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc. Natl Acad. Sci. USA 118, e2025932118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Laker, R. C. et al. AMPK phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 8, 548 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. VerPlank, J. J. S., Lokireddy, S., Zhao, J. & Goldberg, A. L. 26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc. Natl Acad. Sci. USA 116, 4228–4237 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Parker, B. L., Kiens, B., Wojtaszewski, J. F. P., Richter, E. A. & James, D. E. Quantification of exercise-regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB J. 34, 5906–5916 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Seaborne, R. A. & Sharples, A. P. The interplay between exercise metabolism, epigenetics, and skeletal muscle remodeling. Exerc. Sport Sci. Rev. 48, 188–200 (2020).

    Article  PubMed  Google Scholar 

  193. McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu, X. et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J. Clin. Invest. 116, 675–682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Solagna, F. et al. Exercise-dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTF-SRF signalling. Acta Physiol. 230, e13496 (2020).

    Article  CAS  Google Scholar 

  197. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Figueiredo, V. C. et al. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J. Physiol. 599, 3363–3384 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Seaborne, R. A. et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci. Rep. 8, 1898 (2018). This comprehensive interrogation of the resistance exercise-induced methylome provides an epigenetic hypothesis for ‘muscle memory’.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Sexton, C. L. et al. Skeletal muscle DNA methylation and mRNA responses to a bout of higher versus lower load resistance exercise in previously trained men. Cells 12, 263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lindholm, M. E. et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 9, 1557–1569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Maasar, M. F. et al. The comparative methylome and transcriptome after change of direction compared to straight line running exercise in human skeletal muscle. Front. Physiol. 12, 619447 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Galle, E. et al. H3K18 lactylation marks tissue-specific active enhancers. Genome Biol. 23, 207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Massart, J. et al. Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nat. Commun. 12, 5948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bonilauri, B. & Dallagiovanna, B. Long non-coding RNAs are differentially expressed after different exercise training programs. Front. Physiol. 11, 567614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Vechetti, I. J. Jr. et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 35, e21644 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Xhuti, D., Nilsson, M. I., Manta, K., Tarnopolsky, M. A. & Nederveen, J. P. Circulating exosome-like vesicle and skeletal muscle microRNAs are altered with age and resistance training. J. Physiol. https://doi.org/10.1113/JP282663 (2023).

    Article  PubMed  Google Scholar 

  208. Watanabe, S. et al. Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment. PNAS Nexus 1, pgac173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Murach, K. A. et al. Fusion-independent satellite cell communication to muscle fibers during load-induced hypertrophy. Function 1, zqaa009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Fry, C. S., Kirby, T. J., Kosmac, K., McCarthy, J. J. & Peterson, C. A. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell 20, 56–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Albanese, M. et al. MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genet. 17, e1009951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wohlwend, M. et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci. Transl Med. 13, eabc7367 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pinheiro, H. et al. mRNA distribution in skeletal muscle is associated with mRNA size. J. Cell Sci. 134, jcs256388 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Denes, L. T., Kelley, C. P. & Wang, E. T. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat. Commun. 12, 6079 (2021). This study and Pinheiro et al. (2021) suggest that mRNAs are transported along microtubules in muscle, which has notable implications for the regulation of the ‘myonuclear domain’.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Scarborough, E. A. et al. Microtubules orchestrate local translation to enable cardiac growth. Nat. Commun. 12, 1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Taylor-Weiner, H. et al. Modeling the transport of nuclear proteins along single skeletal muscle cells. Proc. Natl Acad. Sci. USA 117, 2978–2986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cutler, A. A., Jackson, J. B., Corbett, A. H. & Pavlath, G. K. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J. Cell Sci. 131, jcs207670 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Masschelein, E. et al. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet. Muscle 10, 21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Borowik, A. K. et al. Skeletal muscle nuclei in mice are not post-mitotic. Function 4, zqac059 (2023). This study provides the first compelling evidence that myonuclei can synthesize DNA and that this process can be augmented by muscle mechanical overload.

    Article  PubMed  Google Scholar 

  222. Pearen, M. A. et al. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol. Endocrinol. 26, 372–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Correia, J. C., Ferreira, D. M. & Ruas, J. L. Intercellular: local and systemic actions of skeletal muscle PGC-1s. Trends Endocrinol. Metab. 26, 305–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Goode, J. M. et al. The nuclear receptor, Nor-1, induces the physiological responses associated with exercise. Mol. Endocrinol. 30, 660–676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wu, Z. et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells. Proc. Natl Acad. Sci. USA 103, 14379–14384 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wilson, T. E., Fahrner, T. J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  PubMed  Google Scholar 

  227. Maira, M., Martens, C., Philips, A. & Drouin, J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol. Cell Biol. 19, 7549–7557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chao, L. C. et al. Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization. J. Lipid Res. 53, 2610–2619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ruas, J. L. et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151, 1319–1331 (2012). This is the first report that PGC1A4 is transcribed from the alternative PGC1A promoter after resistance exercise and can stimulate muscle hypertrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Barres, R. et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  231. Perez-Schindler, J. et al. RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc. Natl Acad. Sci. USA 118, e2105951118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fan, W. et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Fan, L. et al. Transcription factors KLF15 and PPARδ cooperatively orchestrate genome-wide regulation of lipid metabolism in skeletal muscle. J. Biol. Chem. 298, 101926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mammucari, C. et al. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep. 10, 1269–1279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Koh, J. H. et al. Enhancement of anaerobic glycolysis — a role of PGC-1α4 in resistance exercise. Nat. Commun. 13, 2324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wackerhage, H. et al. Does a hypertrophying muscle fibre reprogramme its metabolism similar to a cancer cell? Sports Med. 52, 2569–2578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Bohlen, J., Roiuk, M. & Teleman, A. A. Phosphorylation of ribosomal protein S6 differentially affects mRNA translation based on ORF length. Nucleic Acids Res. 49, 13062–13074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Chaillou, T., Zhang, X. & McCarthy, J. J. Expression of muscle-specific ribosomal protein L3-like impairs myotube growth. J. Cell. Physiol. 231, 1894–1902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Granata, C., Oliveira, R. S. F., Little, J. P. & Bishop, D. J. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1α and p53 in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 318, E224–E236 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Brook, M. S. et al. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J. Physiol. 594, 7399–7417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Norrbom, J. M. et al. A HIF-1 signature dominates the attenuation in the human skeletal muscle transcriptional response to high-intensity interval training. J. Appl. Physiol. 132, 1448–1459 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Stokes, T. et al. Molecular transducers of human skeletal muscle remodeling under different loading states. Cell Rep. 32, 107980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Porter, C., Reidy, P. T., Bhattarai, N., Sidossis, L. S. & Rasmussen, B. B. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med. Sci. Sports Exerc. 47, 1922–1931 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Granata, C., Jamnick, N. A. & Bishop, D. J. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 48, 1809–1828 (2018).

    Article  PubMed  Google Scholar 

  245. Andrade-Souza, V. A. et al. Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J. 34, 1602–1619 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Soto, I. et al. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol. 23, 170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liang, X. et al. Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle. J. Biol. Chem. 291, 25306–25318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Thomas, A. C. Q. et al. Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women. FASEB J. 36, e22500 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Binet, E. R. et al. Sex-based comparisons of muscle cellular adaptations after 10 weeks of progressive resistance training in middle-aged adults. J. Appl. Physiol. 134, 116–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Verdijk, L. B., Snijders, T., Holloway, T. M., Van Kranenburg, J. & Van Loon, L. J. C. Resistance training increases skeletal muscle capillarization in healthy older men. Med. Sci. Sports Exerc. 48, 2157–2164 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Hetlelid, K. J., Plews, D. J., Herold, E., Laursen, P. B. & Seiler, S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc. Med. 1, e000047 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Gehlert, S. et al. Effects of acute and chronic resistance exercise on the skeletal muscle metabolome. Metabolites 12, 445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ozaki, H., Loenneke, J. P., Thiebaud, R. S. & Abe, T. Resistance training induced increase in VO2max in young and older subjects. Eur. Rev. Aging Phys. Act. 10, 107–116 (2013).

    Article  Google Scholar 

  254. Eihara, Y. et al. Heavy resistance training versus plyometric training for improving running economy and running time trial performance: a systematic review and meta-analysis. Sports Med. Open 8, 138 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Damas, F. et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J. Physiol. 594, 5209–5222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Saleem, A. & Hood, D. A. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J. Physiol. 591, 3625–3636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Beyfuss, K., Erlich, A. T., Triolo, M. & Hood, D. A. The role of p53 in determining mitochondrial adaptations to endurance training in skeletal muscle. Sci. Rep. 8, 14710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Li, X. et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab. 35, 200–211.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  259. Martin, A. A. et al. Sarcomere dynamics revealed by a myofilament integrated FRET-based biosensor in live skeletal muscle fibers. Sci. Rep. 12, 18116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fentz, J. et al. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 309, E900–E914 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Ballmann, C., Tang, Y., Bush, Z. & Rowe, G. C. Adult expression of PGC-1α and -1β in skeletal muscle is not required for endurance exercise-induced enhancement of exercise capacity. Am. J. Physiol. Endocrinol. Metab. 311, E928–E938 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448–4464.e17 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Gandin, V. et al. Cap-dependent translation initiation monitored in living cells. Nat. Commun. 13, 6558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhen, K. et al. A systematic review and meta-analysis on effects of aerobic exercise in people with Parkinson’s disease. NPJ Parkinsons Dis. 8, 146 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Yu, Q. et al. Comparative effectiveness of multiple exercise interventions in the treatment of mental health disorders: a systematic review and network meta-analysis. Sports Med. Open 8, 135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Battista, F. et al. Effect of exercise on cardiometabolic health of adults with overweight or obesity: focus on blood pressure, insulin resistance, and intrahepatic fat — a systematic review and meta-analysis. Obes. Rev. 22, e13269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Nielsen, J. et al. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am. J. Physiol. Endocrinol. Metab. 299, E1053–E1060 (2010).

    Article  CAS  PubMed  Google Scholar 

  268. Nielsen, J. et al. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 298, E706–E713 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Yi, J. et al. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J. Biol. Chem. 286, 32436–32443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011). This reference and De Stefani et al. (2011) co-identify the core component of the elusive mitochondrial calcium uniporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Denton, R. M., McCormack, J. G. & Edgell, N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem. J. 190, 107–117 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Turkan, A., Hiromasa, Y. & Roche, T. E. Formation of a complex of the catalytic subunit of pyruvate dehydrogenase phosphatase isoform 1 (PDP1c) and the L2 domain forms a Ca2+ binding site and captures PDP1c as a monomer. Biochemistry 43, 15073–15085 (2004).

    Article  CAS  PubMed  Google Scholar 

  274. Rutter, G. A. & Denton, R. M. The binding of Ca2+ ions to pig heart NAD+-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem. J. 263, 453–462 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Denton, R. M., Pullen, T. J., Armstrong, C. T., Heesom, K. J. & Rutter, G. A. Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression. Biochem. J. 473, 1165–1178 (2016).

    Article  CAS  PubMed  Google Scholar 

  276. Sembrowich, W. L., Quintinskie, J. J. & Li, G. Calcium uptake in mitochondria from different skeletal muscle types. J. Appl. Physiol. 59, 137–141 (1985).

    Article  CAS  PubMed  Google Scholar 

  277. Sidossis, L. S., Gastaldelli, A., Klein, S. & Wolfe, R. R. Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am. J. Physiol. 272, E1065–E1070 (1997).

    CAS  PubMed  Google Scholar 

  278. Wang, Y. et al. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol. Cell 82, 3270–3283.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  279. Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  281. Miyake, T. & McDermott, J. C. Re-organization of nucleolar architecture in myogenic differentiation. J. Cell Sci. 136, jcs260496 (2023).

    Article  CAS  PubMed  Google Scholar 

  282. Emilio, E. J., Hita-Contreras, F., Jimenez-Lara, P. M., Latorre-Roman, P. & Martinez-Amat, A. The association of flexibility, balance, and lumbar strength with balance ability: risk of falls in older adults. J. Sports Sci. Med. 13, 349–357 (2014).

    PubMed  PubMed Central  Google Scholar 

  283. Roberts, B. M., Nuckols, G. & Krieger, J. W. Sex differences in resistance training: a systematic review and meta-analysis. J. Strength. Cond. Res. 34, 1448–1460 (2020).

    Article  PubMed  Google Scholar 

  284. Schoenfeld, B. J., Ogborn, D. & Krieger, J. W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J. Sports Sci. 35, 1073–1082 (2017).

    Article  PubMed  Google Scholar 

  285. Baz-Valle, E., Balsalobre-Fernandez, C., Alix-Fages, C. & Santos-Concejero, J. A systematic review of the effects of different resistance training volumes on muscle hypertrophy. J. Hum. Kinet. 81, 199–210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Schoenfeld, B. J., Grgic, J. & Krieger, J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. J. Sports Sci. 37, 1286–1295 (2019).

    Article  PubMed  Google Scholar 

  287. Carvalho, L. et al. Muscle hypertrophy and strength gains after resistance training with different volume-matched loads: a systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 47, 357–368 (2022).

    Article  PubMed  Google Scholar 

  288. Refalo, M. C., Helms, E. R., Trexler, E. T., Hamilton, D. L. & Fyfe, J. J. Influence of resistance training proximity-to-failure on skeletal muscle hypertrophy: a systematic review with meta-analysis. Sports Med. 53, 649–665 (2023).

    Article  PubMed  Google Scholar 

  289. Plotkin, D. et al. Progressive overload without progressing load? The effects of load or repetition progression on muscular adaptations. PeerJ 10, e14142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Bohm, S., Mersmann, F. & Arampatzis, A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med. Open 1, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Nunes, E. A. et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J. Cachexia Sarcopenia Muscle 13, 795–810 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Mattioni Maturana, F., Martus, P., Zipfel, S. & AM, N. I. Effectiveness of HIIE versus MICT in improving cardiometabolic risk factors in health and disease: a meta-analysis. Med. Sci. Sports Exerc. 53, 559–573 (2021).

    Article  CAS  PubMed  Google Scholar 

  293. Milanovic, Z., Sporis, G. & Weston, M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 45, 1469–1481 (2015).

    Article  PubMed  Google Scholar 

  294. Scribbans, T. D., Vecsey, S., Hankinson, P. B., Foster, W. S. & Gurd, B. J. The effect of training intensity on VO2max in young healthy adults: a meta-regression and meta-analysis. Int. J. Exerc. Sci. 9, 230–247 (2016).

    PubMed  PubMed Central  Google Scholar 

  295. Jamnick, N. A., Pettitt, R. W., Granata, C., Pyne, D. B. & Bishop, D. J. An examination and critique of current methods to determine exercise intensity. Sports Med. 50, 1729–1756 (2020).

    Article  PubMed  Google Scholar 

  296. Iannetta, D. et al. A critical evaluation of current methods for exercise prescription in women and men. Med. Sci. Sports Exerc. 52, 466–473 (2020).

    Article  PubMed  Google Scholar 

  297. Hov, H. et al. Aerobic high-intensity intervals are superior to improve \(\mathop{{\rm{V}}}\limits^{.}{\rm{O}}{}_{2{\rm{\max }}}\) compared with sprint intervals in well-trained men. Scand. J. Med. Sci. Sports 33, 146–159 (2023).

  298. Hubal, M. J. et al. Variability in muscle size and strength gain after unilateral resistance training. Med. Sci. Sports Exerc. 37, 964–972 (2005). Similar to Bouchard et al. (1999), this study clearly illustrates interindividual heterogeniety in exercise adaptation to a given resistance training programme.

    PubMed  Google Scholar 

  299. Vollaard, N. B. et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J. Appl. Physiol. 106, 1479–1486 (2009).

    Article  PubMed  Google Scholar 

  300. Bouchard, C. et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J. Appl. Physiol. 87, 1003–1008 (1999). This is a seminal work on the contribution of genetics towards endurance training-induced changes in aerobic fitness.

    Article  CAS  PubMed  Google Scholar 

  301. Montero, D. & Lundby, C. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J. Physiol. 595, 3377–3387 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Ross, R., de Lannoy, L. & Stotz, P. J. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin. Proc. 90, 1506–1514 (2015).

    Article  PubMed  Google Scholar 

  303. Janssen, I., Heymsfield, S. B., Wang, Z. M. & Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. 89, 81–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  304. Tian, Q. et al. Muscle mitochondrial energetics predicts mobility decline in well-functioning older adults: the baltimore longitudinal study of aging. Aging Cell 21, e13552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Alcazar, J., Rodriguez-Lopez, C., Delecluse, C., Thomis, M. & Van Roie, E. Ten-year longitudinal changes in muscle power, force, and velocity in young, middle-aged, and older adults. J. Cachexia Sarcopenia Muscle 14, 1019–1032 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Grosicki, G. J., Zepeda, C. S. & Sundberg, C. W. Single muscle fibre contractile function with ageing. J. Physiol. 600, 5005–5026 (2022).

    Article  CAS  PubMed  Google Scholar 

  307. Zhang, X. et al. Characterization of cellular senescence in aging skeletal muscle. Nat. Aging 2, 601–615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Moiseeva, V. et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 613, 169–178 (2023).

    Article  CAS  PubMed  Google Scholar 

  309. Dungan, C. M. et al. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 21, e13528 (2022).

    Article  CAS  PubMed  Google Scholar 

  310. Dungan, C. M. et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience 44, 1925–1940 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Englund, D. A. et al. p21 induces a senescence program and skeletal muscle dysfunction. Mol. Metab. 67, 101652 (2023).

    Article  CAS  PubMed  Google Scholar 

  312. Sailani, M. R. et al. Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Sci. Rep. 9, 3272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Ringholm, S. et al. Impact of aging and lifelong exercise training on mitochondrial function and network connectivity in human skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 78, 373–383 (2023).

    Article  CAS  PubMed  Google Scholar 

  314. Ruple, B. A. et al. Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. FASEB J. 35, e21864 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Vinel, C. et al. The exerkine apelin reverses age-associated sarcopenia. Nat. Med. 24, 1360–1371 (2018).

    Article  CAS  PubMed  Google Scholar 

  316. Lee, U. et al. A Tead1-Apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle. iScience 25, 104589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. O’Bryan, S. J. et al. Progressive resistance training for concomitant increases in muscle strength and bone mineral density in older adults: a systematic review and meta-analysis. Sports Med. 52, 1939–1960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  318. D’Hulst, G. et al. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat. Commun. 11, 174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Balachandran, A. T. et al. Comparison of power training vs traditional strength training on physical function in older adults: a systematic review and meta-analysis. JAMA Netw. Open 5, e2211623 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  320. McKenna, M. J., Morton, J., Selig, S. E. & Snow, R. J. Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J. Appl. Physiol. 87, 2244–2252 (1999).

    Article  CAS  PubMed  Google Scholar 

  321. Hornemann, T. et al. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein. J. Mol. Biol. 332, 877–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  322. Kraft, T., Hornemann, T., Stolz, M., Nier, V. & Wallimann, T. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ. J. Muscle Res. Cell Motil. 21, 691–703 (2000).

    Article  CAS  PubMed  Google Scholar 

  323. Perry, C. G. et al. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. J. Physiol. 590, 5475–5486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Hultman, E., Soderlund, K., Timmons, J. A., Cederblad, G. & Greenhaff, P. L. Muscle creatine loading in men. J. Appl. Physiol. 81, 232–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  325. de Souza, E. S. A. et al. Effects of creatine supplementation on renal function: a systematic review and meta-analysis. J. Ren. Nutr. 29, 480–489 (2019).

    Article  Google Scholar 

  326. Lanhers, C. et al. Creatine supplementation and lower limb strength performance: a systematic review and meta-analyses. Sports Med. 45, 1285–1294 (2015).

    Article  PubMed  Google Scholar 

  327. Prokopidis, K. et al. Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 81, 416–427 (2023).

    Article  PubMed  Google Scholar 

  328. Areta, J. L. & Hopkins, W. G. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 48, 2091–2102 (2018).

    Article  PubMed  Google Scholar 

  329. Nielsen, J., Dubillot, P., Stausholm, M. H. & Ortenblad, N. Specific ATPases drive compartmentalized glycogen utilization in rat skeletal muscle. J. Gen. Physiol. 154, e202113071 (2022). This study finds that specific depots of glycogen fuel different ATPases to varying extents in skeletal muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Vigh-Larsen, J. F. et al. The role of muscle glycogen content and localization in high-intensity exercise performance: a placebo-controlled trial. Med. Sci. Sports Exerc. 54, 2073–2086 (2022).

    Article  CAS  PubMed  Google Scholar 

  331. Gejl, K. D. et al. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med. Sci. Sports Exerc. 46, 496–505 (2014).

    Article  CAS  PubMed  Google Scholar 

  332. Impey, S. G. et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 48, 1031–1048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Marquet, L. A. et al. Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med. Sci. Sports Exerc. 48, 663–672 (2016).

    Article  CAS  PubMed  Google Scholar 

  334. Tarnopolsky, M. A. et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1271–R1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  335. Goodpaster, B. H., He, J., Watkins, S. & Kelley, D. E. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab. 86, 5755–5761 (2001).

    Article  CAS  PubMed  Google Scholar 

  336. Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Trinh, B. et al. Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Rep. Med. 2, 100396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Kistner, T. M., Pedersen, B. K. & Lieberman, D. E. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 4, 170–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  339. Katashima, C. K. et al. Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism. Sci. Adv. 8, eabm7355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Li, V. L. et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature 606, 785–790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Hu, M., Nie, J., Lei, O. K., Shi, Q. & Kong, Z. Acute effect of high-intensity interval training versus moderate-intensity continuous training on appetite perception: a systematic review and meta-analysis. Appetite 182, 106427 (2023).

    Article  PubMed  Google Scholar 

  343. Reddy, A. et al. pH-gated succinate secretion regulates muscle remodeling in response to exercise. Cell 183, 62–75.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Agudelo, L. Z. et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159, 33–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  345. Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  346. Correia, J. C. et al. Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metab. 33, 2215–2230.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work could not be included owing to space constraints. The authors thank M. Karlén for preparation of the artwork in the supplementary figures. K.A.M. was supported by the National Institutes of Health (NIH R00 AG063994). K.A.D. was supported by Deutsches Zentrum für Diabetesforschung (2020/21). J.R.Z. was supported by the Swedish Research Council (Vetenskapsrådet) (2015-00165), the Swedish Research Council for Sport Science (P2022-0013, P2023-0093) and the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (NNF18CC0034900).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Juleen R. Zierath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Kamala Sreekumaran Nair, who co-reviewed with Mark Pataky, Adam P Sharples and Brian Glancy for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adrenoceptor

Adrenergic transmembrane G-protein-coupled receptors (GPCRs) that mediate the actions of the endogenous catecholamines adrenaline and noradrenaline. There are nine subtypes of adrenoceptors: α1A, α1B, α1D, α2A, α2B, α2C, β1, β2 and β3. The α2A and α2C adrenoceptors regulate presynaptic neurotransmitter release from central adrenergic and peripheral sympathetic nerves.

Ergogenic

A performance-enhancing effect.

Hypertrophy

Typically refers to an increase in the cross-sectional area (or radial growth) of muscle fibres, resulting in gains of skeletal muscle mass in response to mechanical loading activities, such as resistance exercise.

Ketone body

A lipid-derived, water-soluble, organic compound produced in the liver that can be used as an alternative energy source by extra-hepatic tissues — predominantly the brain, but also heart and skeletal muscle.

Maximal oxygen consumption

(\(\mathop{{\rm{V}}}\limits^{.}\)O2max). The maximum volume of oxygen (ml kg−1 min−1) that can be inspired and utilized during exhaustive exercise, such that the value (\(\mathop{{\rm{V}}}\limits^{.}\)O2) plateaus despite increasing workloads. \(\mathop{{\rm{V}}}\limits^{.}\)O2max is a measure of aerobic or cardiorespiratory fitness and is commonly used to standardize exercise intensity for clinical trials (for example, x% of \(\mathop{{\rm{V}}}\limits^{.}\)O2max).

Mitophagy

A specific form of lysosome-dependent catabolism (autophagy), through which damaged mitochondria are selectively removed. Mitophagy of the mitochondrial reticulum has an essential role in maintaining cellular energy homeostasis.

Muscle spindles

Structures embedded in most mammalian skeletal muscles that continuously relay proprioceptive information regarding muscle length and movement to the central nervous system. Muscle spindles consist of intrafusal muscle fibres enclosed within a capsule layer and are distinct from the extrafusal muscle fibres discussed in this Review.

Non-esterified fatty acids

(NEFAs). A metabolic substrate utilized by muscle at rest and in an intensity-dependent manner during exercise.

Peak-twitch torque

The force produced by muscle (through a moment arm) evoked by a single electrical stimulation from, for example, applied electrodes.

Phosphagen system

A rapid energy-producing pathway comprising the ATP regenerating adenylate kinase (ADP + ADP ⇌ ATP + AMP) and creatine kinase (CrP + ADP ⇌ ATP + Cr) reactions. Of these reactions, creatine kinase has a greater capacity for ATP resynthesis in muscle due to the availability of creatine phosphate stores.

Proprioceptive

Able to sense intrinsic information regarding bodily position and locomotion. The primary proprioceptive sensory organ of the body is the muscle spindle.

Proton-motive force

The proton electrochemical gradient in mitochondria consisting of an electrical charge gradient (also known as the ‘membrane potential’) and a pH gradient. The proton-motive force is generated by the proton-pumping action of respiratory complexes across the inner mitochondrial membrane and couples substrate oxidation to ATP generation.

Transverse tubules

(T-tubules). Invaginations in the sarcolemmal membrane that insert between myofibrils. T-tubules tightly associate with two terminal cisternae (calcium-releasing regions) of the sarcoplasmic reticulum, forming the ‘triads’, which are essential for excitation–contraction coupling.

Voluntary force production

The conscious or ‘voluntary’ production of muscle force (in other words, not triggered by exogenous electrical stimulation).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.A.B., Murach, K.A., Dyar, K.A. et al. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 24, 607–632 (2023). https://doi.org/10.1038/s41580-023-00606-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00606-x

  • Springer Nature Limited

This article is cited by

Navigation