Skip to main content

Advertisement

Log in

Molecular and cellular basis of genetically inherited skeletal muscle disorders

  • Review Article
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

Abstract

Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue — encompassing the muscle cells (myofibres) themselves and their extracellular matrix — or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder — mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy — the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability — processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of the costamere and diseases linked to the dystrophin glycoprotein complex.
Fig. 2: Sarcomere structure in skeletal muscle and its dysfunction in diseases.
Fig. 3: Proteins linked to the nuclear envelope and their association with muscle diseases.
Fig. 4: Excitation–contraction coupling at the triad and its dysfunction.
Fig. 5: Skeletal muscle membrane repair.
Fig. 6: Factors linked to protein turnover and quality control in the muscle and their links to disease.

Similar content being viewed by others

References

  1. Engel, A. G., Shen, X. M., Selcen, D. & Sine, S. M. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 14, 420–434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Monaco, A. P. et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Monaco, A. P., Bertelson, C. J., Colletti-Feener, C. & Kunkel, L. M. Localization and cloning of Xp21 deletion breakpoints involved in muscular dystrophy. Hum. Genet. 75, 221–227 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987). First description of the dystrophin protein, which is encoded by DMD, the causal gene underlying DMD.

    Article  CAS  PubMed  Google Scholar 

  5. Gittings, L. M. & Sattler, R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac. Rev. 9, 12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thornton, C. A., Wang, E. & Carrell, E. M. Myotonic dystrophy: approach to therapy. Curr. Opin. Genet. Dev. 44, 135–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kyba, M. et al. Meeting report: the 2020 FSHD International Research Congress. Skelet. Muscle 10, 36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lek, A., Rahimov, F., Jones, P. L. & Kunkel, L. M. Emerging preclinical animal models for FSHD. Trends Mol. Med. 21, 295–306 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259–262 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Ervasti, J. M., Ohlendieck, K., Kahl, S. D., Gaver, M. G. & Campbell, K. P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–319 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Crosbie, R. H., Heighway, J., Venzke, D. P., Lee, J. C. & Campbell, K. P. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J. Biol. Chem. 272, 31221–31224 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Crosbie, R. H. et al. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J. Cell Biol. 145, 153–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hack, A. A. et al. Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. J. Cell Sci. 113 (Pt 14), 2535–2544 (2000). First observation that the dystrophin–glycoprotein complex has both mechanical and signalling roles.

    Article  CAS  PubMed  Google Scholar 

  14. Michele, D. E. & Campbell, K. P. Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J. Biol. Chem. 278, 15457–15460 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992). Important characterization of the dystrophin–glycoprotein complex demonstrating that it is post-translationally processed from a single polypeptide chain.

    Article  CAS  PubMed  Google Scholar 

  16. Gao, W. et al. Regulation of proteolytic cleavage of retinoid X receptor-α by GSK-3β. Carcinogenesis 34, 1208–1215 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bunnell, T. M., Jaeger, M. A., Fitzsimons, D. P., Prins, K. W. & Ervasti, J. M. Destabilization of the dystrophin-glycoprotein complex without functional deficits in alpha-dystrobrevin null muscle. PLoS ONE 3, e2604 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Oak, S. A., Zhou, Y. W. & Jarrett, H. W. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278, 39287–39295 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Thompson, T. G. et al. Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J. Cell Biol. 148, 115–126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ayalon, G., Davis, J. Q., Scotland, P. B. & Bennett, V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135, 1189–1200 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bhosle, R. C., Michele, D. E., Campbell, K. P., Li, Z. & Robson, R. M. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem. Biophys. Res. Commun. 346, 768–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Blake, D. J. & Martin-Rendon, E. Intermediate filaments and the function of the dystrophin-protein complex. Trends Cardiovasc. Med. 12, 224–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Moorwood, C. Syncoilin, an intermediate filament-like protein linked to the dystrophin associated protein complex in skeletal muscle. Cell Mol. Life Sci. 65, 2957–2963 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Stone, M. R., O’Neill, A., Catino, D. & Bloch, R. J. Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol. Biol. Cell 16, 4280–4293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crosbie, R. H. et al. Characterization of aquaporin-4 in muscle and muscular dystrophy. FASEB J. 16, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Ervasti, J. M. & Campbell, K. P. Dystrophin and the membrane skeleton. Curr. Opin. Cell Biol. 5, 82–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Bowe, M. A., Deyst, K. A., Leszyk, J. D. & Fallon, J. R. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12, 1173–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Yurchenco, P. D., Cheng, Y. S., Campbell, K. & Li, S. Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. J. Cell Sci. 117, 735–742 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Yurchenco, P. D. & Patton, B. L. Developmental and pathogenic mechanisms of basement membrane assembly. Curr. Pharm. Des. 15, 1277–1294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaiswal, J. K. et al. Patients with a non-dysferlin Miyoshi myopathy have a novel membrane repair defect. Traffic 8, 77–88 (2007).

    Article  PubMed  Google Scholar 

  32. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H. & Kunkel, L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988). First recognition of the ‘reading frame rule’, which observes that deletions that spare the open reading frame of the DMD gene result in a milder phenotype of BMD.

    Article  CAS  PubMed  Google Scholar 

  34. Bello, L. et al. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies. Sci. Rep. 6, 32439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Domingos, J. & Muntoni, F. Outcome measures in Duchenne muscular dystrophy: sensitivity to change, clinical meaningfulness, and implications for clinical trials. Dev. Med. Child. Neurol. 60, 117 (2018).

    Article  PubMed  Google Scholar 

  36. Mayer, O. H. Pulmonary function and clinical correlation in DMD. Paediatr. Respir. Rev. 30, 13–15 (2019).

    PubMed  Google Scholar 

  37. Monaco, A. P. et al. Detection of deletions spanning the Duchenne muscular dystrophy locus using a tightly linked DNA segment. Nature 316, 842–845 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Monaco, A. P. & Kunkel, L. M. Cloning of the Duchenne/Becker muscular dystrophy locus. Adv. Hum. Genet. 17, 61–98 (1988).

    CAS  PubMed  Google Scholar 

  39. Harper, S. Q. et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 8, 253–261 (2002). Demonstrates that the phasing of the spectrin repeats in dystrophin’s rod domain contribute to the functional properties of the protein and set a foundation for AAV–microdystrophin constructs in clinical trials.

    Article  CAS  PubMed  Google Scholar 

  40. Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeney, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA 90, 3710–3714 (1993). Provides conclusive evidence that the deficiency of dystrophin in DMD leads to a compromised sarcolemmal membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kobayashi, Y. M., Rader, E. P., Crawford, R. W. & Campbell, K. P. Endpoint measures in the mdx mouse relevant for muscular dystrophy pre-clinical studies. Neuromuscul. Disord. 22, 34–42 (2012).

    Article  PubMed  Google Scholar 

  42. Straub, V., Rafael, J. A., Chamberlain, J. S. & Campbell, K. P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997). Establishes Evans blue dye as a useful indicator of compromised membrane integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spencer, M. J., Montecino-Rodriguez, E., Dorshkind, K. & Tidball, J. G. Helper (CD4+) and cytotoxic (CD8+) T cells promote the pathology of dystrophin-deficient muscle. Clin. Immunol. 98, 235–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Capote, J. et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J. Cell Biol. 213, 275–288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ermolova, N. V. et al. Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function. Neuromuscul. Disord. 24, 583–595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vetrone, S. A. et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J. Clin. Invest. 119, 1583–1594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schiaffino, S., Gorza, L., Dones, I., Cornelio, F. & Sartore, S. Fetal myosin immunoreactivity in human dystrophic muscle. Muscle Nerve 9, 51–58 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Harper, S. Q., Crawford, R. W., DelloRusso, C. & Chamberlain, J. S. Spectrin-like repeats from dystrophin and alpha-actinin-2 are not functionally interchangeable. Hum. Mol. Genet. 11, 1807–1815 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. McNally, E. M., Bönnemann, C. G., Kunkel, L. M. & Bhattacharya, S. K. Deficiency of adhalin in a patient with muscular dystrophy and cardiomyopathy. N. Engl. J. Med. 334, 1610–1611 (1996). Identification of α-sarcoglycan deficiency in a patient with a muscular dystrophy with cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  50. Bonnemann, C. G. et al. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat. Genet. 11, 266–273 (1995). Discovery of the mutation in β-sarcoglycan leading to a LGMD.

    Article  CAS  PubMed  Google Scholar 

  51. Nigro, V. et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat. Genet. 14, 195–198 (1996). Discovery of δ-sarcoglycan mutations linked to a muscular dystrophy.

    Article  CAS  PubMed  Google Scholar 

  52. McNally, E. M. et al. Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutation. Am. J. Hum. Genet. 59, 1040–1047 (1996). Discovery of γ-sarcoglycan mutations linked to a muscular dystrophy.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshida-Moriguchi, T. & Campbell, K. P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laverda, A. M. et al. Congenital muscular dystrophy, brain and eye abnormalities: one or more clinical entities? Childs Nerv. Syst. 9, 84–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, D. S. et al. POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 62, 1009–1011 (2004). Early observation that incomplete glycosylation of α-dystroglycan arises from mutations in a glycosyltransferase gene, causing impaired laminin binding and muscle disease.

    Article  CAS  PubMed  Google Scholar 

  56. Stevens, E. et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 92, 354–365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jensen, B. S. et al. GMPPB-associated dystroglycanopathy: emerging common variants with phenotype correlation. Hum. Mutat. 36, 1159–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Inamori, K. et al. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues. J. Biol. Chem. 289, 28138–28148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Michele, D. E., Kabaeva, Z., Davis, S. L., Weiss, R. M. & Campbell, K. P. Dystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage. Circ. Res. 105, 984–993 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baker, N. L. et al. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum. Mol. Genet. 14, 279–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Lamande, S. R. et al. Reduced collagen VI causes Bethlem myopathy: a heterozygous COL6A1 nonsense mutation results in mRNA decay and functional haploinsufficiency. Hum. Mol. Genet. 7, 981–989 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Lamande, S. R., Shields, K. A., Kornberg, A. J., Shield, L. K. & Bateman, J. F. Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J. Biol. Chem. 274, 21817–21822 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Dominov, J. A. et al. Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice. Hum. Mol. Genet. 14, 1029–1040 (2005). First demonstration that interfering with apoptosis ameliorates laminin α2-deficient muscular dystrophy.

    Article  CAS  PubMed  Google Scholar 

  64. Girgenrath, M., Dominov, J. A., Kostek, C. A. & Miller, J. B. Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy. J. Clin. Invest. 114, 1635–1639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amburgey, K. et al. A cross-sectional study of nemaline myopathy. Neurology 96, e1425–e1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sewry, C. A., Laitila, J. M. & Wallgren-Pettersson, C. Nemaline myopathies: a current view. J. Muscle Res. Cell Motil. 40, 111–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pelin, K. et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc. Natl Acad. Sci. USA 96, 2305–2310 (1999). First identification of nebulin mutations as a cause of nemaline myopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Colombo, I. et al. Congenital myopathies: natural history of a large pediatric cohort. Neurology 84, 28–35 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gonorazky, H. D., Bönnemann, C. G. & Dowling, J. J. The genetics of congenital myopathies. Handb. Clin. Neurol. 148, 549–564 (2018).

    Article  PubMed  Google Scholar 

  70. Nowak, K. J. et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208–212 (1999). First identification of ACTA1 mutations as a cause of nemaline myopathy.

    Article  CAS  PubMed  Google Scholar 

  71. Chu, M., Gregorio, C. C. & Pappas, C. T. Nebulin, a multi-functional giant. J. Exp. Biol. 219, 146–152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Labeit, S., Ottenheijm, C. A. & Granzier, H. Nebulin, a major player in muscle health and disease. FASEB J. 25, 822–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kiss, B. et al. Nebulin and Lmod2 are critical for specifying thin-filament length in skeletal muscle. Sci. Adv. 6, eabc1992 (2020). Elegant demonstration of the crucial role of nebulin in specifying thin filament length across species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pappas, C. T., Krieg, P. A. & Gregorio, C. C. Nebulin regulates actin filament lengths by a stabilization mechanism. J. Cell Biol. 189, 859–870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ottenheijm, C. A. et al. Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency. Hum. Mol. Genet. 18, 2359–2369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Witt, C. C. et al. Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J. 25, 3843–3855 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gohlke, J., Tonino, P., Lindqvist, J., Smith, J. E. & Granzier, H. The number of Z-repeats and super-repeats in nebulin greatly varies across vertebrates and scales with animal size. J. Gen. Physiol. 153, e202012783 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Winter, J. M. et al. Mutation-specific effects on thin filament length in thin filament myopathy. Ann. Neurol. 79, 959–969 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mijailovich, S. M. et al. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity. J. Gen. Physiol. 151, 680–704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takano, K. et al. Nebulin and N-WASP cooperate to cause IGF-1-induced sarcomeric actin filament formation. Science 330, 1536–1540 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Nowak, K. J., Ravenscroft, G. & Laing, N. G. Skeletal muscle alpha-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol. 125, 19–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003).

    Article  PubMed  Google Scholar 

  83. Laing, N. G. et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum. Mutat. 30, 1267–1277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Joureau, B. et al. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann. Neurol. 83, 269–282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jain, R. K. et al. Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurology 78, 1100–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Donner, K. et al. Mutations in the beta-tropomyosin (TPM2) gene–a rare cause of nemaline myopathy. Neuromuscul. Disord. 12, 151–158 (2002).

    Article  PubMed  Google Scholar 

  87. Laing, N. G. et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat. Genet. 9, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Johnston, J. J. et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet. 67, 814–821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yuen, M. et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J. Clin. Invest. 124, 4693–4708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sandaradura, S. A. et al. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant. Hum. Mutat. 39, 383–388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kimber, E., Tajsharghi, H., Kroksmark, A. K., Oldfors, A. & Tulinius, M. A mutation in the fast skeletal muscle troponin I gene causes myopathy and distal arthrogryposis. Neurology 67, 597–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. El-Mezgueldi, M. Tropomyosin dynamics. J. Muscle Res. Cell Motil. 35, 203–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Memo, M. & Marston, S. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function. J. Muscle Res. Cell Motil. 34, 165–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Marttila, M. et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum. Mutat. 35, 779–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sung, S. S. et al. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet. 73, 212–214 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sung, S. S. et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet. 72, 681–690 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ravenscroft, G. et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am. J. Hum. Genet. 93, 6–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gupta, V. A. et al. Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am. J. Hum. Genet. 93, 1108–1117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sambuughin, N. et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am. J. Hum. Genet. 87, 842–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Agrawal, P. B. et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80, 162–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Garg, A. et al. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J. Clin. Invest. 124, 3529–3539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jirka, C., Pak, J. H., Grosgogeat, C. A., Marchetii, M. M. & Gupta, V. A. Dysregulation of NRAP degradation by KLHL41 contributes to pathophysiology in nemaline myopathy. Hum. Mol. Genet. 28, 2549–2560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tajsharghi, H. et al. Human disease caused by loss of fast IIa myosin heavy chain due to recessive MYH2 mutations. Brain 133, 1451–1459 (2010).

    Article  PubMed  Google Scholar 

  104. Toydemir, R. M. et al. Mutations in embryonic myosin heavy chain (MYH3) cause Freeman–Sheldon syndrome and Sheldon–Hall syndrome. Nat. Genet. 38, 561–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Veugelers, M. et al. Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N. Engl. J. Med. 351, 460–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Tajsharghi, H. et al. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann. Neurol. 54, 494–500 (2003). First association of dominant mutations in MYH7, which encodes a myosin heavy chain, in skeletal myopathy.

    Article  CAS  PubMed  Google Scholar 

  107. Martinsson, T. et al. Autosomal dominant myopathy: missense mutation (Glu-706 –>Lys) in the myosin heavy chain IIa gene. Proc. Natl Acad. Sci. USA 97, 14614–14619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tajsharghi, H. & Oldfors, A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 125, 3–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Meredith, C. et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am. J. Hum. Genet. 75, 703–708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lamont, P. J. et al. Novel mutations widen the phenotypic spectrum of slow skeletal/beta-cardiac myosin (MYH7) distal myopathy. Hum. Mutat. 35, 868–879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Linke, W. A. et al. PEVK domain of titin: an entropic spring with actin-binding properties. J. Struct. Biol. 137, 194–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Kellermayer, D., Smith, J. E. 3rd & Granzier, H. Titin mutations and muscle disease. Pflug. Arch. 471, 673–682 (2019).

    Article  CAS  Google Scholar 

  113. Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Savarese, M., Sarparanta, J., Vihola, A., Udd, B. & Hackman, P. Increasing role of titin mutations in neuromuscular disorders. J. Neuromuscul. Dis. 3, 293–308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pfeffer, G. et al. Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 135, 1695–1713 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Oates, E. C. et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann. Neurol. 83, 1105–1124 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. von Nandelstadh, P. et al. Actin-organising properties of the muscular dystrophy protein myotilin. Exp. Cell Res. 310, 131–139 (2005).

    Article  CAS  Google Scholar 

  119. Kostan, J. et al. Molecular basis of F-actin regulation and sarcomere assembly via myotilin. PLoS Biol. 19, e3001148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hauser, M. A. et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet. 9, 2141–2147 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Ochala, J., Carpen, O. & Larsson, L. Maintenance of muscle mass, fiber size, and contractile function in mice lacking the Z-disc protein myotilin. Ups. J. Med. Sci. 114, 235–241 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Heller, S. A., Shih, R., Kalra, R. & Kang, P. B. Emery–Dreifuss muscular dystrophy. Muscle Nerve 61, 436–448 (2020).

    Article  PubMed  Google Scholar 

  123. Janota, C. S., Calero-Cuenca, F. J. & Gomes, E. R. The role of the cell nucleus in mechanotransduction. Curr. Opin. Cell Biol. 63, 204–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Guenantin, A. C. et al. Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy. J. Clin. Invest. 131, e136488 (2021). Demonstration of how mutant lamins at the nuclear envelope can alter histone methylation to alter gene expression profiles that underlie myopathic phenotypes.

    Article  CAS  PubMed Central  Google Scholar 

  125. Broers, J. L. et al. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13, 2567–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Melia, M. J. et al. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene. Brain 136, 1508–1517 (2013). Identifies a new gene, TNPO3, associated with muscular dystrophy that implicates altered nucleocytoplasmic shuttling as a mechanism of disease.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zorzato, F. et al. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244–2256 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Jungbluth, H., Dowling, J. J., Ferreiro, A. & Muntoni, F. et al. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul. Disord. 26, 624–633 (2016).

    Article  PubMed  Google Scholar 

  129. Lawal, T. A. et al. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet. Muscle 10, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jungbluth, H. et al. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat. Rev. Neurol. 14, 151–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, Y. et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat. Genet. 5, 46–50 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Quane, K. A. et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5, 51–55 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Jungbluth, H. et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology 59, 284–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Clarke, N. F. et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum. Mutat. 31, E1544–1550 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Wilmshurst, J. M. et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann. Neurol. 68, 717–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Amburgey, K. et al. Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet J. Rare Dis. 8, 117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Klein, A. et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum. Mutat. 33, 981–988 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Monnier, N. et al. Correlations between genotype and pharmacological, histological, functional, and clinical phenotypes in malignant hyperthermia susceptibility. Hum. Mutat. 26, 413–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. MacLennan, D. H. et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343, 559–561 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Dlamini, N. et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul. Disord. 23, 540–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Gardner, L. et al. Investigating the genetic susceptibility to exertional heat illness. J. Med. Genet. 57, 531–541 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Flucher, B. E. Skeletal muscle CaV1.1 channelopathies. Pflug. Arch. 472, 739–754 (2020).

    Article  CAS  Google Scholar 

  143. Catterall, W. A. Functional subunit structure of voltage-gated calcium channels. Science 253, 1499–1500 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Campbell, K. P., Leung, A. T. & Sharp, A. H. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 11, 425–430 (1988).

    Article  CAS  PubMed  Google Scholar 

  145. Monnier, N., Procaccio, V., Stieglitz, P. & Lunardi, J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am. J. Hum. Genet. 60, 1316–1325 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fiszer, D. et al. Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology 122, 1033–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Matthews, E. et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 72, 1544–1547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schartner, V. et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol. 133, 517–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Matthews, E. et al. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 77, 1960–1964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Polster, A., Nelson, B. R., Olson, E. N. & Beam, K. G. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation. Proc. Natl Acad. Sci. USA 113, 10986–10991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Horstick, E. J. et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat. Commun. 4, 1952 (2013).

    Article  PubMed  CAS  Google Scholar 

  152. Zaharieva, I. T. et al. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum. Mutat. 39, 1980–1994 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Dowling, J. J., Gibbs, E. M. & Feldman, E. L. Membrane traffic and muscle: lessons from human disease. Traffic 9, 1035–1043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dowling, J. J. et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 5, e1000372 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Al-Qusairi, L. & Laporte, J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet. Muscle 1, 26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Ketel, K. et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature 529, 408–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Dowling, J. J., Lawlor, M. W. & Das, S. X-linked myotubular myopathy (eds Adam, M. P. et al.) GeneReviews (2002).

  159. Amburgey, K. et al. A natural history study of X-linked myotubular myopathy. Neurology 89, 1355–1364 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Annoussamy, M. et al. X-linked myotubular myopathy: a prospective international natural history study. Neurology 92, e1852–e1867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hnia, K. et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J. Clin. Invest. 121, 70–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Gavriilidis, C. et al. The MTM1–UBQLN2–HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat. Cell Biol. 20, 198–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Tasfaout, H., Cowling, B. S. & Laporte, J. Centronuclear myopathies under attack: a plethora of therapeutic targets. J. Neuromuscul. Dis. 5, 387–406 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Bitoun, M. et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 37, 1207–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, M., Maani, N. & Dowling, J. J. Dynamin 2 (DNM2) as cause of, and modifier for, human neuromuscular disease. Neurotherapeutics 15, 966–975 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cowling, B. S. et al. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J. Clin. Invest. 127, 4477–4487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Liu, N. et al. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J. Clin. Invest. 121, 3258–3268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Demonbreun, A. R. & McNally, E. M. Dynamin 2 the rescue for centronuclear myopathy. J. Clin. Invest. 124, 976–978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Buono, S. et al. Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc. Natl Acad. Sci. USA 115, 11066–11071 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tasfaout, H. et al. Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice. Nat. Commun. 8, 15661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee, E. et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 1193–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Nicot, A. S. et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39, 1134–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Agrawal, P. B. et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am. J. Hum. Genet. 95, 218–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Campbell, H. M. et al. Loss of SPEG inhibitory phosphorylation of ryanodine receptor type-2 promotes atrial fibrillation. Circulation 142, 1159–1172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kusumoto, D., Yuasa, S. & Fukuda, K. SPEG, an indispensable kinase of SERCA2a for calcium homeostasis. Circ. Res. 124, 668–670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Beckmann, J. S. et al. Identification of muscle-specific calpain and beta-sarcoglycan genes in progressive autosomal recessive muscular dystrophies. Neuromuscul. Disord. 6, 455–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Kramerova, I., Kudryashova, E., Tidball, J. G. & Spencer, M. J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 13, 1373–1388 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Kramerova, I. et al. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy). Hum. Mol. Genet. 25, 2194–2207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kramerova, I. et al. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Hum. Mol. Genet. 21, 3193–3204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ono, Y. & Sorimachi, H. Calpains: an elaborate proteolytic system. Biochim. Biophys. Acta 1824, 224–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Guyon, J. R. et al. Calpain 3 cleaves filamin C and regulates its ability to interact with gamma- and delta-sarcoglycans. Muscle Nerve 28, 472–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Cohen, N. et al. Identification of putative in vivo substrates of calpain 3 by comparative proteomics of overexpressing transgenic and nontransgenic mice. Proteomics 6, 6075–6084 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Kramerova, I., Kudryashova, E., Venkatraman, G. & Spencer, M. J. Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin–proteasome pathway. Hum. Mol. Genet. 16, 1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Kramerova, I. et al. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum. Mol. Genet. 17, 3271–3280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. DiFranco, M., Kramerova, I., Vergara, J. L. & Spencer, M. J. Attenuated Ca2+ release in a mouse model of limb girdle muscular dystrophy 2A. Skelet. Muscle 6, 11 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Kramerova, I. et al. Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Hum. Mol. Genet. 18, 3194–3205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. El-Khoury, R. et al. Divergent features of mitochondrial deficiencies in LGMD2A associated with novel calpain-3 mutations. J. Neuropathol. Exp. Neurol. 78, 88–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Richard, I. et al. Calpainopathy — a survey of mutations and polymorphisms. Am. J. Hum. Genet. 64, 1524–1540 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ermolova, N., Kramerova, I. & Spencer, M. J. Autolytic activation of calpain 3 proteinase is facilitated by calmodulin protein. J. Biol. Chem. 290, 996–1004 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Ermolova, N. et al. Pathogenity of some limb girdle muscular dystrophy mutations can result from reduced anchorage to myofibrils and altered stability of calpain 3. Hum. Mol. Genet. 20, 3331–3345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Richard, I. et al. Natural history of LGMD2A for delineating outcome measures in clinical trials. Ann. Clin. Transl. Neurol. 3, 248–265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. McNally, E. M. et al. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet. 7, 871–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Woodman, S. E., Sotgia, F., Galbiati, F., Minetti, C. & Lisanti, M. P. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62, 538–543 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Dewulf, M. et al. Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat. Commun. 10, 1974 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lyfenko, A. D. & Dirksen, R. T. Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J. Physiol. 586, 4815–4824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Silva-Rojas, R., Laporte, J. & Bohm, J. STIM1/ORAI1 loss-of-function and gain-of-function mutations inversely impact on SOCE and calcium homeostasis and cause multi-systemic mirror diseases. Front. Physiol. 11, 604941 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Bohm, J. & Laporte, J. Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium 76, 1–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Cannon, S. C. Sodium channelopathies of skeletal muscle. Handb. Exp. Pharmacol. 246, 309–330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cannon, S. C. Channelopathies of skeletal muscle excitability. Compr. Physiol. 5, 761–790 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Demonbreun, A. R. et al. An actin-dependent annexin complex mediates plasma membrane repair in muscle. J. Cell Biol. 213, 705–718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bittel, D. C. et al. Annexin A2 mediates dysferlin accumulation and muscle cell membrane repair. Cells 9, 1919 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  203. Croissant, C., Gounou, C., Bouvet, F., Tan, S. & Bouter, A. Annexin-A6 in membrane repair of human skeletal muscle cell: a role in the cap subdomain. Cells 9, 1742 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  204. Fischer, T., Lu, L., Haigler, H. T. & Langen, R. Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J. Biol. Chem. 282, 9996–10004 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Mellgren, R. L. et al. Calcium-dependent plasma membrane repair requires m- or mu-calpain, but not calpain-3, the proteasome, or caspases. Biochim. Biophys. Acta 1793, 1886–1893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lek, A. et al. Calpains, cleaved mini-dysferlin C72, and L-type channels underpin calcium-dependent muscle membrane repair. J. Neurosci. 33, 5085–5094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sudhof, T. C. & Rizo, J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17, 379–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  208. Demonbreun, A. R. & McNally, E. M. Plasma membrane repair in health and disease. Curr. Top. Membr. 77, 67–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Cai, C. et al. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11, 56–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Weisleder, N., Takeshima, H. & Ma, J. Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair. Commun. Integr. Biol. 2, 225–226 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Cai, C. et al. MG53 regulates membrane budding and exocytosis in muscle cells. J. Biol. Chem. 284, 3314–3322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. McDade, J. R., Archambeau, A. & Michele, D. E. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J. 28, 3660–3670 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. McDade, J. R. & Michele, D. E. Membrane damage-induced vesicle-vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin. Hum. Mol. Genet. 23, 1677–1686 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. McDade, J. R., Naylor, M. T. & Michele, D. E. Sarcolemma wounding activates dynamin-dependent endocytosis in striated muscle. FEBS J. 288, 160–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Weiler, T. et al. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum. Mol. Genet. 8, 871–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  217. Bansal, D. & Campbell, K. P. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14, 206–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Hicks, D. et al. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134, 171–182 (2011).

    Article  PubMed  Google Scholar 

  219. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Cullup, T. et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat. Genet. 45, 83–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Ramachandran, N. et al. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol. 125, 439–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Martiniuk, F., Bodkin, M., Tzall, S. & Hirschhorn, R. Identification of the base-pair substitution responsible for a human acid alpha glucosidase allele with lower “affinity” for glycogen (GAA 2) and transient gene expression in deficient cells. Am. J. Hum. Genet. 47, 440–445 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sugie, K. et al. Autophagic vacuoles with sarcolemmal features delineate Danon disease and related myopathies. J. Neuropathol. Exp. Neurol. 64, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Cohen, S., Zhai, B., Gygi, S. P. & Goldberg, A. L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell Biol. 198, 575–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kudryashova, E., Wu, J., Havton, L. A. & Spencer, M. J. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum. Mol. Genet. 18, 1353–1367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nicklas, S. et al. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration. PLoS ONE 7, e30445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mokhonova, E. I. et al. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2. Hum. Mol. Genet. 24, 2873–2883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kudryashova, E., Kramerova, I. & Spencer, M. J. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J. Clin. Invest. 122, 1764–1776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gupta, V. A. & Beggs, A. H. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet. Muscle 4, 11 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Selcen, D. et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65, 83–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sarparanta, J. et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat. Genet. 44, 450–455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Harms, M. B. et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann. Neurol. 71, 407–416 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Vicart, P. et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 20, 92–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  235. Ghaoui, R. et al. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 86, 391–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Anttonen, A. K. et al. The gene disrupted in Marinesco–Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat. Genet. 37, 1309–1311 (2005).

    Article  CAS  PubMed  Google Scholar 

  237. Senderek, J. et al. Mutations in SIL1 cause Marinesco–Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37, 1312–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  238. Moghadaszadeh, B. et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat. Genet. 29, 17–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  239. Villar-Quiles, R. N. et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: a case series. Neurology 95, e1512–e1527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Clarke, N. F. et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann. Neurol. 59, 546–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Ferreiro, A. et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann. Neurol. 55, 676–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  242. Ferreiro, A. et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71, 739–749 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Mackenzie, S. J., Nicolau, S., Connolly, A. M. & Mendell, J. R. Therapeutic approaches for Duchenne muscular dystrophy: old and new. Semin. Pediatr. Neurol. 37, 100877 (2021).

    Article  PubMed  Google Scholar 

  244. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9, eaal5209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Gonorazky, H. D. et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. Am. J. Hum. Genet. 104, 1007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ruggieri, A. et al. Multiomic elucidation of a coding 99-mer repeat-expansion skeletal muscle disease. Acta Neuropathol. 140, 231–235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hanson, B., Wood, M. J. A. & Roberts, T. C. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biol. https://doi.org/10.1080/15476286.2021.1874161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Tanner, M. K., Tang, Z. & Thornton, C. A. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res. 49, 2240–2254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhao, M., Smith, L., Volpatti, J., Fabian, L. & Dowling, J. J. Insights into wild-type dynamin 2 and the consequences of DNM2 mutations from transgenic zebrafish. Hum. Mol. Genet. 28, 4186–4196 (2019).

    Article  PubMed  CAS  Google Scholar 

  250. Cowling, B. S. et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J. Clin. Invest. 124, 1350–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Foley, A. R. et al. Collagen VI-related dystrophies. GeneReviews (2004).

  252. Ross, J. A. et al. rAAV-related therapy fully rescues myonuclear and myofilament function in X-linked myotubular myopathy. Acta Neuropathol. Commun. 8, 167 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Childers, M. K. et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci. Transl. Med. 6, 220ra210 (2014).

    Article  CAS  Google Scholar 

  254. Chamberlain, J. R. & Chamberlain, J. S. Progress toward gene therapy for Duchenne muscular dystrophy. Mol. Ther. 25, 1125–1131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Willcocks, R. J. et al. Assessment of rAAVrh.74.MHCK7.micro-dystrophin gene therapy using magnetic resonance imaging in children with Duchenne muscular dystrophy. JAMA Netw. Open. 4, e2031851 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Mendell, J. R. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 77, 1122–1131 (2020).

    Article  PubMed  Google Scholar 

  257. Vannoy, C. H., Xiao, W., Lu, P., Xiao, X. & Lu, Q. L. Efficacy of gene therapy is dependent on disease progression in dystrophic mice with mutations in the FKRP gene. Mol. Ther. Methods Clin. Dev. 5, 31–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Salabarria, S. M. et al. Advancements in AAV-mediated gene therapy for Pompe disease. J. Neuromuscul. Dis. 7, 15–31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Simmons, T. R. et al. Pre-clinical dose-escalation studies establish a therapeutic range for U7snRNA-mediated DMD exon 2 skipping. Mol. Ther. Methods Clin. Dev. 21, 325–340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Young, C. S., Pyle, A. D. & Spencer, M. J. CRISPR for neuromuscular disorders: gene editing and beyond. Physiology 34, 341–353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  262. Barraza-Flores, P. et al. Laminin-111 protein therapy after disease onset slows muscle disease in a mouse model of laminin-alpha2 related congenital muscular dystrophy. Hum. Mol. Genet. 29, 2162–2170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Qiao, C. et al. Amelioration of muscle and nerve pathology in LAMA2 muscular dystrophy by AAV9-mini-agrin. Mol. Ther. Methods Clin. Dev. 9, 47–56 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Peltz, S. W. et al. Nonsense suppression activity of PTC124 (ataluren). Proc. Natl Acad. Sci. USA 106, E64 (2009). author reply E65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Finkel, R. S. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS ONE 8, e81302 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. McDonald, C. M. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1489–1498 (2017).

    Article  CAS  PubMed  Google Scholar 

  267. Smith, E. C. et al. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: an 18-month interim analysis of a non-randomized open-label extension study. PLoS Med. 17, e1003222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Nagy, S. et al. Tamoxifen in Duchenne muscular dystrophy (TAMDMD): study protocol for a multicenter, randomized, placebo-controlled, double-blind phase 3 trial. Trials 20, 637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their colleagues and laboratory members who provided important feedback on this Review including R. Crosbie, J. Chamberlain, E. McNally and A. Demonbreun.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Melissa J. Spencer.

Ethics declarations

Competing interests

M.J.S. is a co-founder of a startup called Myogene Bio. M.J.S. and C.C.W. serve on the Research Advisory Board for the Muscular Dystrophy Association. J.M.D. is the Chief Medical Officer for Deep Genomics

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks M. Sandri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Reticular lamina

One of the layers of the basement membrane, composed of collagens I, III and VI.

Ambulation

The ability to walk, unassisted.

Repeat expansions

Duplication of untranslated regions of the genome.

Myotonic dystrophy

Multi-system disorders with the feature of an inability of muscles to relax after contraction.

Fascioscapulohumeral dystrophy

Group of disorders due to failed regulation of the developmental protein DUX4.

Syntrophins

Adapter proteins linked to the cytoskeleton.

GRB2

Adapter protein often involved in coupling downstream signalling to cytoskeletal proteins.

Becker muscular dystrophy

(BMD). Disease that is allelic with Duchenne muscular dystrophy (DMD). BMD mutations are usually in-frame deletions and the phenotype is milder than in DMD.

Mdx mouse model

Murine model of Duchenne muscular dystrophy containing a premature termination codon in exon 23 of the Dmd gene.

Walker–Warburg syndrome

Congenital muscle disorders manifesting as muscle weakness and eye and brain abnormalities.

Muscle–eye–brain disease

Group of congenital muscle diseases that also impact the eye and brain, and are caused by abnormal glycosylation of α-dystroglycan.

Bethlem myopathy

Diseases due to mutations in collagen genes that result in defects in muscle and connective tissue.

Ullrich myopathy

Congenital muscle disorders due to mutations in genes encoding collagen VI.

Type 1 fibres

Muscle fibres that are slow to fatigue and rely on oxidative metabolism.

Arthrogryposis

Conditions involving multiple joint contractures.

Type 2 fibres

Muscle fibres that are quick to fatigue and rely on glycolytic metabolism.

Kelch domain

A protein motif found in Kelch proteins, which are adapters for cullin–E3 ubiquitin ligases.

Laing distal myopathy

Muscle disease due to mutations in MYH7 that causes late onset of muscle weakness, initiating in distal muscles.

Myosin storage myopathy

A non-progressive muscle disorder involving excessive accumulation of myosin.

Centronuclear myopathy

Group of muscle disorders that demonstrate the specific appearance of small, centrally nucleated muscle fibres on a muscle biopsy sample.

Cores

Structures on a muscle biopsy sample that lack NADH or SDH staining.

Emery–Dreifuss muscular dystrophy

A group of muscle diseases linked to mutations in either FHL1, EMD or LMNA.

Central core disease

Group of muscle disorders that demonstrate lack of histochemical staining as small holes or ‘cores’ on muscle biopsy samples.

Minicore myopathy

Muscle disorders that show small holes or ‘minicores’ on muscle biopsy samples.

Congenital fibre type disproportion

Muscle diseases that show altered distribution of type 1 or type 2 muscle fibres.

Malignant hyperthermia

A condition in which excessive calcium is released from the ryanodine receptor, leading to severe spasms and increased heart rate.

Exertional rhabdomyolysis

Muscle tissue breakdown that occurs after heavy muscle use.

SERCA

A P-type calcium ATPase that pumps calcium back into the sarcoplasmic reticulum following relaxation after muscle contraction.

Calcium calmodulin kinase II

(CaMKII). Kinase that is activated by calcium–calmodulin, which in the muscle has been shown to promote type 1 fibre gene expression for muscle adaptation to exercise.

Aldolase

An enzyme, also known as fructose bisphosphate aldolase A, that catalyses the fourth step of glycolysis.

Store-operated calcium entry

A process that triggers calcium entry from the extracellular space in response to depletion of intracellular calcium stores.

Tubular aggregate myopathy

Muscle disease with appearance of tubular aggregates on biopsy samples.

Stormorken syndrome

A rare condition associated with tubular aggregate myopathy in which many tissues are affected.

Phosphatidylserine

A phospholipid that is present in the sarcolemmal membrane on the cytoplasmic leaflet.

Synaptotagmin

A C2-domain-containing (Ca2+ sensing) protein that is typically involved in membrane trafficking.

EHD proteins

A family of proteins containing the epidermal growth factor receptor pathway substrate 15 homology domain that are typically involved in cellular trafficking.

Myoshi myopathy

A muscle disorder due to mutations in the DYSF gene. This disease is allelic with limb girdle muscular dystrophy type 2B, but manifests with primarily distal muscle involvement.

Vici syndrome

Developmental disorder that involves skeletal muscle, heart and other organ systems.

Danon disease

Lysosomal storage disorder due to mutations in LAMP2.

Pompe disease

Lysosomal storage disorder affecting skeletal muscle and heart, related to aberrant glycogen accumulation.

X-linked myopathy with excessive autophagy

Childhood muscle disorder involving proximal muscle weakness due to disruption of an unidentified gene on the X chromosome.

Sarcotubular myopathy

A muscle disorder demonstrating membrane-enclosed vacuoles; allelic with limb girdle muscular dystrophy type 2H due to mutations in TRIM32.

Bardet–Biedl syndrome

A group of rare disorders affecting multiple organs.

Marinesco–Sjögren syndrome

A multi-organ disease involving muscle weakness, ataxia and cataracts.

Selenocysteine protein family

Proteins containing one or more selenocysteines, which are amino acids that use selenium instead of sulfur in cysteine.

Mallory body myopathy

Inclusions on a muscle biopsy sample that stain positively for desmin.

Exon skipping

Therapeutic strategy to restore the reading frame of a gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowling, J.J., Weihl, C.C. & Spencer, M.J. Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 22, 713–732 (2021). https://doi.org/10.1038/s41580-021-00389-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00389-z

  • Springer Nature Limited

This article is cited by

Navigation