Skip to main content

Advertisement

Log in

Parkinson’s disease and the gastrointestinal microbiome

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recently, there has been a surge in awareness of the gastrointestinal microbiome (GM) and its role in health and disease. Of particular note is an association between the GM and Parkinson’s disease (PD) and the realisation that the GM can act via a complex bidirectional communication between the gut and the brain. Compelling evidence suggests that a shift in GM composition may play an important role in the pathogenesis of PD by facilitating the characteristic ascending neurodegenerative spread of α-synuclein aggregates from the enteric nervous system to the brain. Here, we review evidence linking GM changes with PD, highlighting mechanisms supportive of pathological α-synuclein spread and intestinal inflammation in PD. We summarise existing patterns and correlations seen in clinical studies of the GM in PD, together with the impacts of non-motor symptoms, medications, lifestyle, diet and ageing on the GM. Roles of GM modulating therapies including probiotics and faecal microbiota transplantation are discussed. Encouragingly, alterations in the GM have repeatedly been observed in PD, supporting a biological link and highlighting it as a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590

    PubMed  Google Scholar 

  2. Lubomski M, Rushworth RL, Tisch S (2015) Hospitalisation and comorbidities in Parkinson’s disease: a large Australian retrospective study. J Neurol Neurosurg Psychiatry 86(3):324–330

    PubMed  Google Scholar 

  3. Lim SY, Tan AH, Fox SH, Evans AH, Low SC (2017) Integrating patient concerns into Parkinson’s disease management. Curr Neurol Neurosci Rep 17(1):3

    PubMed  Google Scholar 

  4. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol 8:37

    PubMed  PubMed Central  Google Scholar 

  5. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363(9423):1783–1793

    CAS  PubMed  Google Scholar 

  6. Goldman JG, Postuma R (2014) Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol 27(4):434–441

    PubMed  PubMed Central  Google Scholar 

  7. Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W et al (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 27(5):617–626

    PubMed  Google Scholar 

  8. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81(3):369–382

    PubMed  Google Scholar 

  9. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

    CAS  PubMed  Google Scholar 

  10. Lyte M (2014) Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5(3):381–389

    PubMed  PubMed Central  Google Scholar 

  11. Mukherjee A, Biswas A, Das SK (2016) Gut dysfunction in Parkinson’s disease. World J Gastroenterol 22(25):5742–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    PubMed  Google Scholar 

  13. Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K et al (2017) Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS One 12(11):e0187307

    PubMed  PubMed Central  Google Scholar 

  14. Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G (2018) Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil 24(1):30–42

    PubMed  PubMed Central  Google Scholar 

  15. Parashar A, Udayabanu M (2017) Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7

    PubMed  PubMed Central  Google Scholar 

  16. Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1(8):718–725

    PubMed  PubMed Central  Google Scholar 

  17. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302

    PubMed  Google Scholar 

  18. Zuker CS (2015) Food for the brain. Cell 161(1):9–11

    CAS  PubMed  Google Scholar 

  19. Sommer F, Backhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11(4):227–238

    CAS  PubMed  Google Scholar 

  20. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  22. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    CAS  PubMed  Google Scholar 

  23. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192

    CAS  PubMed  Google Scholar 

  24. Bercik P (2011) The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 60(3):288–289

    PubMed  Google Scholar 

  25. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94

    PubMed  PubMed Central  Google Scholar 

  26. Dinan TG, Cryan JF (2015) The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care 18(6):552–558

    PubMed  Google Scholar 

  27. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  28. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72

    CAS  PubMed  Google Scholar 

  30. Scheperjans F, Pekkonen E, Kaakkola S, Auvinen P (2015) Linking smoking, coffee, urate, and Parkinson’s disease—a role for gut microbiota? J Parkinson’s Dis 5(2):255–262

    Google Scholar 

  31. Galland L (2014) The gut microbiome and the brain. J Med Food 17(12):1261–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21(37):10609–10620

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    CAS  PubMed  Google Scholar 

  34. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4:623–632

    CAS  PubMed  Google Scholar 

  35. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G et al (2017) Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol 232(9):2359–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fandriks L, Lonroth H et al (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82(11):3864–3871

    CAS  PubMed  Google Scholar 

  37. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314

    CAS  PubMed  Google Scholar 

  38. Perez-Pardo P, Hartog M, Garssen J, Kraneveld AD (2017) Microbes tickling your tummy: the importance of the gut-brain axis in Parkinson’s disease. Curr Behav Neurosci Rep 4(4):361–368

    PubMed  PubMed Central  Google Scholar 

  39. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD et al (2001) Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57(3):456–462

    CAS  PubMed  Google Scholar 

  40. Savica R, Carlin JM, Grossardt BR, Bower JH, Ahlskog JE, Maraganore DM et al (2009) Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology 73(21):1752–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cersosimo MG, Benarroch EE (2012) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46(3):559–564

    PubMed  Google Scholar 

  42. Lebouvier T, Neunlist M, des Varannes SB, Coron E, Drouard A, N’Guyen JM et al (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PloS One 5(9):e12728

    PubMed  PubMed Central  Google Scholar 

  43. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Trans 110(5):517–536

    CAS  Google Scholar 

  44. Adler CH, Beach TG (2016) Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov Disord 31(8):1114–1119

    PubMed  PubMed Central  Google Scholar 

  45. Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH et al (2018) Does Parkinson’s disease start in the gut? Acta Neuropathol 135(1):1–12

    PubMed  Google Scholar 

  46. Goedert M, Masuda-Suzukake M, Falcon B (2017) Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain 140(2):266–278

    PubMed  Google Scholar 

  47. Recasens A, Ulusoy A, Kahle PJ, Di Monte DA, Dehay B (2018) In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 373(1):183–193

    CAS  PubMed  Google Scholar 

  48. Svensson E, Horvath-Puho E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P et al (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78(4):522–529

    PubMed  Google Scholar 

  49. Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A et al (2017) Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88(21):1996–2002

    PubMed  PubMed Central  Google Scholar 

  50. Tysnes OB, Kenborg L, Herlofson K, Steding-Jessen M, Horn A, Olsen JH et al (2015) Does vagotomy reduce the risk of Parkinson’s disease? Ann Neurol 78(6):1011–1012

    PubMed  Google Scholar 

  51. Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A et al (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898

    PubMed  PubMed Central  Google Scholar 

  52. Killinger BA, Madaj Z, Sikora JW, Rey N, Haas AJ, Vepa Y et al (2018) The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med 10(465):eaar5280

    PubMed  PubMed Central  Google Scholar 

  53. Visanji NP, Marras C, Kern DS, Al Dakheel A, Gao A, Liu LW et al (2015) Colonic mucosal a-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology 84(6):609–616

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruffmann C, Parkkinen L (2016) Gut feelings about alpha-synuclein in gastrointestinal biopsies: biomarker in the making? Mov Disord 31(2):193–202

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F et al (2015) Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 3:12

    PubMed  PubMed Central  Google Scholar 

  56. Ha CW, Lam YY, Holmes AJ (2014) Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol 20(44):16498–16517

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17(4):219–232

    CAS  PubMed  Google Scholar 

  58. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  59. Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson’s Dis 3:3

    Google Scholar 

  60. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48

    CAS  PubMed  Google Scholar 

  61. Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hill-Burns EM et al (2018) Stool immune profiles evince gastrointestinal inflammation in Parkinson’s Dis. Mov Disord 33(5):793–804

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6(12):e28032

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O (2012) Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci 39(2):185–188

    CAS  PubMed  Google Scholar 

  64. Davies KN, King D, Billington D, Barrett JA (1996) Intestinal permeability and orocaecal transit time in elderly patients with Parkinson’s disease. Postgrad Med J 72(845):164–167

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA et al (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29(8):999–1009

    CAS  PubMed  Google Scholar 

  66. Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24

    CAS  PubMed  Google Scholar 

  67. Weimers P, Halfvarson J, Sachs MC, Saunders-Pullman R, Ludvigsson JF, Peter I et al (2019) Inflammatory bowel disease and Parkinson’s disease: a nationwide Swedish cohort study. Inflamm Bowel Dis 25(1):111–123

    PubMed  Google Scholar 

  68. Lin JC, Lin CS, Hsu CW, Lin CL, Kao CH (2016) Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 22(5):1049–1055

    PubMed  Google Scholar 

  69. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360

    CAS  PubMed  Google Scholar 

  70. Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K et al (2015) Intestinal dysbiosis and lowered serum Lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10(11):e0142164

    PubMed  PubMed Central  Google Scholar 

  71. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M et al (2018) Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68:829–843

    PubMed  Google Scholar 

  72. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    PubMed  Google Scholar 

  73. Zoetendal EG, de Vos WM (2014) Effect of diet on the intestinal microbiota and its activity. Curr Opin Gastroenterol 30(2):189–195

    CAS  PubMed  Google Scholar 

  74. Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S et al (2018) Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34:396–405

    PubMed  Google Scholar 

  77. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480 e12

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mulak A (2018) A controversy on the role of short-chain fatty acids in the pathogenesis of Parkinson’s disease. Mov Disord 33(3):398–401

    PubMed  Google Scholar 

  79. Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM et al (2015) Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat Disord 21(3):221–225

    PubMed  Google Scholar 

  80. Pierantozzi M, Pietroiusti A, Sancesario G, Lunardi G, Fedele E, Giacomini P et al (2001) Reduced l-dopa absorption and increased clinical fluctuations in Helicobacter pylori-infected Parkinson’s disease patients. Neurol Sci 22(1):89–91

    CAS  PubMed  Google Scholar 

  81. Rees K, Stowe R, Patel S, Ives N, Breen K, Clarke CE et al (2011) Helicobacter pylori eradication for Parkinson’s disease. Cochrane Database Syst Rev 9(11):CD008453

    Google Scholar 

  82. Gabrielli M, Bonazzi P, Scarpellini E, Bendia E, Lauritano EC, Fasano A et al (2011) Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 26(5):889–892

    PubMed  Google Scholar 

  83. Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM et al (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20(5):535–540

    PubMed  Google Scholar 

  84. Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E et al (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28(9):1241–1249

    CAS  PubMed  Google Scholar 

  85. Scheperjans F (2018) The prodromal microbiome. Mov Disord 33(1):5–7

    PubMed  Google Scholar 

  86. Mertsalmi TH, Aho VTE, Pereira PAB, Paulin L, Pekkonen E, Auvinen P et al (2017) More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 24(11):1375–1383

    CAS  PubMed  Google Scholar 

  87. Li W, Wu X, Hu X, Wang T, Liang S, Duan Y et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233

    PubMed  Google Scholar 

  88. Heintz-Buschart A, Pandey U, Wicke T, Sixel-Doring F, Janzen A, Sittig-Wiegand E et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    CAS  PubMed  Google Scholar 

  89. Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB et al (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737

    CAS  PubMed  Google Scholar 

  90. Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N et al (2018) Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun 70:194–202

    PubMed  Google Scholar 

  91. Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage l-DOPA-naive Parkinson’s disease patients. Genome Med 9(1):39

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hopfner F, Kunstner A, Muller SH, Kunzel S, Zeuner KE, Margraf NG et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45

    CAS  PubMed  Google Scholar 

  93. Lin A, Zheng W, He Y, Tang W, Wei X, He R et al (2018) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88

    PubMed  Google Scholar 

  94. Scheperjans F (2016) Gut microbiota, 1013 new pieces in the Parkinson’s disease puzzle. Curr Opin Neurol 29(6):773–780

    CAS  PubMed  Google Scholar 

  95. Gerhardt S, Mohajeri MH (2018) Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10(6):E708

    PubMed  Google Scholar 

  96. Pal GD, Shaikh M, Forsyth CB, Ouyang B, Keshavarzian A, Shannon KM (2015) Abnormal lipopolysaccharide binding protein as marker of gastrointestinal inflammation in Parkinson disease. Front Neurosci 9:306

    PubMed  PubMed Central  Google Scholar 

  97. Engen PA, Dodiya HB, Naqib A, Forsyth CB, Green SJ, Voigt RM et al (2017) The potential role of gut-derived inflammation in multiple system atrophy. J Parkinson’s Dis 7(2):331–346

    CAS  Google Scholar 

  98. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017) Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord 38:61–67

    PubMed  Google Scholar 

  99. Berg D, Lang AE, Postuma RB, Maetzler W, Deuschl G, Gasser T et al (2013) Changing the research criteria for the diagnosis of Parkinson’s disease: obstacles and opportunities. Lancet Neurol 12(5):514–524

    PubMed  Google Scholar 

  100. Broen MP, Narayen NE, Kuijf ML, Dissanayaka NN, Leentjens AF (2016) Prevalence of anxiety in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 31(8):1125–1133

    PubMed  Google Scholar 

  101. Alifirova VM, Zhukova NG, Zhukova IA, Mironova YS, Petrov VA, Izhboldina OP et al (2016) Correlation between emotional-affective disorders and gut microbiota composition in patients with Parkinson’s disease. Vestn Ross Akad Med Nauk 71(6):427–435

    CAS  PubMed  Google Scholar 

  102. Dinan TG, Cryan JF (2017) Gut feelings on Parkinson’s and depression. Cerebrum 2017:4–17

    Google Scholar 

  103. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    PubMed  Google Scholar 

  104. Klingelhoefer L, Reichmann H (2017) The gut and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol 134:787–809

    PubMed  Google Scholar 

  105. Khalif IL, Quigley EM, Konovitch EA, Maximova ID (2005) Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig Liver Dis 37(11):838–849

    CAS  PubMed  Google Scholar 

  106. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555(7698):623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen C, Guo Y, Luo W, Lin C, Ding M (2013) Serum urate and the risk of Parkinson’s disease: results from a meta-analysis. Can J Neurol Sci 40(1):73–79

    PubMed  Google Scholar 

  108. Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52(3):276–284

    PubMed  Google Scholar 

  109. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272

    PubMed  Google Scholar 

  110. Tavassoly O, Kakish J, Nokhrin S, Dmitriev O, Lee JS (2014) The use of nanopore analysis for discovering drugs which bind to alpha-synuclein for treatment of Parkinson’s disease. Eur J Med Chem 88:42–54

    CAS  PubMed  Google Scholar 

  111. Derkinderen P, Shannon KM, Brundin P (2014) Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 29(8):976–979

    PubMed  PubMed Central  Google Scholar 

  112. Biedermann L, Brulisauer K, Zeitz J, Frei P, Scharl M, Vavricka SR et al (2014) Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis 20(9):1496–1501

    PubMed  Google Scholar 

  113. Gniechwitz D, Reichardt N, Blaut M, Steinhart H, Bunzel M (2007) Dietary fiber from coffee beverage: degradation by human fecal microbiota. J Agric Food Chem 55(17):6989–6996

    CAS  PubMed  Google Scholar 

  114. Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R (2009) Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 130(2):117–121

    CAS  PubMed  Google Scholar 

  115. Nakayama T, Oishi K (2013) Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol Lett 343(2):161–168

    CAS  PubMed  Google Scholar 

  116. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP (2015) In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr 113(8):1220–1227

    CAS  PubMed  Google Scholar 

  118. Foster JA, Rinaman L, Cryan JF (2017) Stress and the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136

    PubMed  PubMed Central  Google Scholar 

  119. Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS et al (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 14:189

    PubMed  PubMed Central  Google Scholar 

  120. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M et al (2018) Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2018.12.012

    Article  PubMed  Google Scholar 

  121. Conlon MA, Bird AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44

    PubMed  PubMed Central  Google Scholar 

  122. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  124. dos Santos EF, Busanello EN, Miglioranza A, Zanatta A, Barchak AG, Vargas CR et al (2009) Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson’s disease. Metab Brain Dis 24(2):257–269

    CAS  PubMed  Google Scholar 

  125. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes 37(2):216–223

    CAS  Google Scholar 

  126. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer’s Dis 45(2):349–362

    CAS  Google Scholar 

  128. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S et al (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485

    CAS  PubMed  Google Scholar 

  129. van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71(10):6438–6442

    PubMed  PubMed Central  Google Scholar 

  130. Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494

    PubMed  PubMed Central  Google Scholar 

  132. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F et al (2017) Exercise modifies the gut microbiota with positive health effects. Oxidative Med Cell longev 2017:3831972

    Google Scholar 

  133. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S et al (2016) Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4(1):42

    PubMed  PubMed Central  Google Scholar 

  134. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ et al (2016) Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep 6:35455

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR et al (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98(25):14669–14674

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B (2009) Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci 10:109

    PubMed  PubMed Central  Google Scholar 

  137. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    CAS  PubMed  Google Scholar 

  138. Soczynska JK, Kennedy SH, Alsuwaidan M, Mansur RB, Li M, McAndrews MP et al (2017) A pilot, open-label, 8-week study evaluating the efficacy, safety and tolerability of adjunctive minocycline for the treatment of bipolar I/II depression. Bipolar Disord 19(3):198–213

    CAS  PubMed  Google Scholar 

  139. Diguet E, Fernagut PO, Wei X, Du Y, Rouland R, Gross C et al (2004) Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci 19(12):3266–3276

    PubMed  Google Scholar 

  140. Davey KJ, Cotter PD, O’Sullivan O, Crispie F, Dinan TG, Cryan JF et al (2013) Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 3:e309

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cassani E, Privitera G, Pezzoli G, Pusani C, Madio C, Iorio L et al (2011) Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 57(2):117–121

    CAS  PubMed  Google Scholar 

  142. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C et al (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87(12):1274–1280

    CAS  PubMed  Google Scholar 

  143. Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A et al (2017) The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies. Eur J Pharmacol 817:86–95

    CAS  PubMed  Google Scholar 

  144. Kim N, Yun M, Oh YJ, Choi HJ (2018) Mind-altering with the gut: modulation of the gut-brain axis with probiotics. J Microbiol 56(3):172–182

    CAS  PubMed  Google Scholar 

  145. Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K et al (2016) Fermented milk containing Lactobacillus casei Strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol 82(12):3649–3658

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liang S, Wang T, Hu X, Luo J, Li W, Wu X et al (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    CAS  PubMed  Google Scholar 

  147. Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin N Am 46(1):77–89

    Google Scholar 

  148. Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW (2015) Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232(10):1793–1801

    CAS  PubMed  Google Scholar 

  149. Hilimire MR, DeVylder JE, Forestell CA (2015) Fermented foods, neuroticism, and social anxiety: an interaction model. Psychiatry Res 228(2):203–208

    PubMed  Google Scholar 

  150. Yang Y (2015) Gut microbiota research: highlights and commentary. Zhonghua nei ke za zhi 54(5):396–398

    PubMed  Google Scholar 

  151. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA et al (2011) Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9(12):1044–1049

    PubMed  PubMed Central  Google Scholar 

  152. Leffler DA, Lamont JT (2015) Clostridium difficile infection. N Engl J Med 372(16):1539–1548

    CAS  PubMed  Google Scholar 

  153. Tian H, Ding C, Gong J, Ge X, McFarland LV, Gu L et al (2016) Treatment of slow transit constipation with fecal microbiota transplantation: a pilot study. J Clin Gastroenterol 50(10):865–870

    PubMed  Google Scholar 

  154. Ananthaswamy A (2011) Faecal transplant eases symptoms of Parkinson’s disease. New Sci 209(2796):8–9

    Google Scholar 

  155. Evrensel A, Ceylan ME (2016) Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci 14(3):231–237

    PubMed  PubMed Central  Google Scholar 

  156. Tetz G, Brown SM, Hao Y, Tetz V (2018) Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 8(1):10812

    PubMed  PubMed Central  Google Scholar 

  157. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6(10):e25792

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP (2013) Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 8(8):e70803

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB et al (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7):e68322

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503

    CAS  PubMed  Google Scholar 

  161. Perni M, Galvagnion C, Maltsev A, Meisl G, Muller MB, Challa PK et al (2017) A natural product inhibits the initiation of alpha-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci USA 114(6):E1009–E1017

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Collier TJ, Srivastava KR, Justman C, Grammatopoulous T, Hutter-Paier B, Prokesch M et al (2017) Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiol Dis 106:191–204

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chan DKY, Xu YH, Chan LKM, Braidy N, Mellick GD (2017) Mini-review on initiatives to interfere with the propagation and clearance of alpha-synuclein in Parkinson’s disease. Transl Neurodegener 6:33

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Principi N, Esposito S (2016) Gut microbiota and central nervous system development. J Infect 73(6):536–546

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ML: performed literature review, drafted and reviewed the manuscript. AHT: drafted and reviewed the manuscript. S-YL: reviewed the manuscript. AJH: reviewed the manuscript. RLD: drafted and reviewed the manuscript. CMS: drafted and reviewed the manuscript

Corresponding author

Correspondence to Michal Lubomski.

Ethics declarations

Conflicts of interest

This study was not industry sponsored and had no sources of support. No statistical analysis was performed. All authors report no relevant disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubomski, M., Tan, A.H., Lim, SY. et al. Parkinson’s disease and the gastrointestinal microbiome. J Neurol 267, 2507–2523 (2020). https://doi.org/10.1007/s00415-019-09320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09320-1

Keywords

Navigation