Skip to main content

Advertisement

Log in

Membrane transporters in drug development and as determinants of precision medicine

  • Review Article
  • Published:

From Nature Reviews Drug Discovery

View current issue Sign up to alerts

Abstract

The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug–drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Clinically important uptake and efflux transporters in plasma membranes.
Fig. 2: Intrinsic (pink) and extrinsic (blue) factors affecting the abundance and/or activity of drug transport proteins and mechanisms that may be involved, including specific regulatory pathways and/or inhibitory effects.
Fig. 3: Development, validation and applications of physiologically based pharmacokinetic models of transporter-mediated processes.
Fig. 4: Classification of endogenous biomarkers of hepatic and renal transporters and International Transporter Consortium recommendations for their application in drug development.
Fig. 5: Decision tree for organic anion transporting polypeptide (OATP1B)-mediated drug–drug interaction risk assessment with coproporphyrin I.
Fig. 6: Drug-induced organ injury.

Similar content being viewed by others

References

  1. Giacomini, K. M. et al. Membrane transporters in drug development. Nat. Rev. Drug. Discov. 9, 215–236 (2010). This is a seminal publication from the newly formed ITC that coalesced extensive discussions and output from the first ITC workshop, identified a subset of clinically relevant transporters and outlined decision trees that could be applied in translating in vitro experimental outcomes to likelihood of clinical findings resulting from drug–drug interactions; it formed the basis for regulatory recommendations for drug transporters in guidance documents.

    Article  CAS  PubMed  Google Scholar 

  2. Zamek-Gliszczynski, M. J. et al. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin. Pharmacol. Ther. 94, 64–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Zamek-Gliszczynski, M. J. et al. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin. Pharmacol. Ther. 104, 890–899 (2018).

    Article  PubMed  Google Scholar 

  4. Chu, X. et al. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the International Transporter Consortium. Clin. Pharmacol. Ther. 104, 836–864 (2018). This manuscript summarizes challenges and limitations of clinical probe drugs and emerging biomarkers for drug transporters to support clinical development of safe and effective therapeutics; workflows for identification and validation of novel endogenous biomarkers are proposed.

    Article  CAS  PubMed  Google Scholar 

  5. Chu, X. et al. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin. Pharmacol. Ther. 94, 126–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hillgren, K. M. et al. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94, 52–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Brouwer, K. L. R. et al. Regulation of drug transport proteins-from mechanisms to clinical impact: a white paper on behalf of the International Transporter Consortium. Clin. Pharmacol. Ther. 112, 461–484 (2022). This paper reviews mechanisms of transport protein regulation, which are highly complex and can occur at multiple levels to affect transporter function, and highlights why knowledge about these processes is critical in the development of tools and approaches to improve therapeutic outcomes and accurately predict drug disposition and response.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cooper-DeHoff, R. M. et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin. Pharmacol. Ther. 111, 1007–1021 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, C. A. et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug. Metab. Dispos. 43, 490–509 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Matthaei, J. et al. OCT1 mediates hepatic uptake of sumatriptan and loss-of-function OCT1 polymorphisms affect sumatriptan pharmacokinetics. Clin. Pharmacol. Ther. 99, 633–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Zazuli, Z. et al. The impact of genetic polymorphisms in organic cation transporters on renal drug disposition. Int. J. Mol. Sci. 21, 6627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yee, S. W. et al. Influence of transporter polymorphisms on drug disposition and response: a perspective from the International Transporter Consortium. Clin. Pharmacol. Ther. 104, 803–817 (2018). This review describes actionable polymorphisms in SLC and ABC transporters including SLCO1B1, ABCG2 and SLC22A1, which have a high level of evidence for genotype driven drug or dose selection, and discusses mechanisms responsible for their effects on drug toxicity and response.

    Article  PubMed  Google Scholar 

  13. Zamek-Gliszczynski, M. J. et al. ITC commentary on metformin clinical drug-drug interaction study design that enables an efficacy- and safety-based dose adjustment decision. Clin. Pharmacol. Ther. 104, 781–784 (2018). This commentary illustrates the complexity of transporter DDIs, which may often result in different effects on the plasma versus tissue exposure of a drug, and proposes a novel clinical DDI study design for metformin to facilitate rational dose adjustment when this drug is co-administered with OCT/MATE inhibitors.

    Article  CAS  PubMed  Google Scholar 

  14. Hirota, T., Tanaka, T., Takesue, H. & Ieiri, I. Epigenetic regulation of drug transporter expression in human tissues. Expert. Opin. Drug. Metab. Toxicol. 13, 19–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Birmingham, B. K. et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect. Eur. J. Clin. Pharmacol. 71, 341–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Tsamandouras, N. et al. Identification of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a population-modeling approach. Clin. Pharmacol. Ther. 96, 90–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Oi Yan Chan, J., Moullet, M., Williamson, B., Arends, R. H. & Pilla Reddy, V. Harnessing clinical trial and real-world data towards an understanding of sex effects on drug pharmacokinetics, pharmacodynamics and efficacy. Front. Pharmacol. 13, 874606 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burt, H. J. et al. Abundance of hepatic transporters in caucasians: a meta-analysis. Drug. Metab. Dispos. 44, 1550–1561 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mai, Y. et al. Boosting drug bioavailability in men but not women through the action of an excipient. Int. J. Pharm. 587, 119678 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Mai, Y. et al. Quantification of P-glycoprotein in the gastrointestinal tract of humans and rodents: methodology, gut region, sex, and species matter. Mol. Pharm. 18, 1895–1904 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niemi, M., Pasanen, M. K. & Neuvonen, P. J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther. 80, 356–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Tasnif, Y., Morado, J. & Hebert, M. F. Pregnancy-related pharmacokinetic changes. Clin. Pharmacol. Ther. 100, 53–62, (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Chu, X. et al. Clinical implications of altered drug transporter abundance/function and PBPK modeling in specific populations: an ITC perspective. Clin. Pharmacol. Ther. 112, 501–526 (2022). This manuscript provides a critical analysis of the clinical implications of altered transporter abundance and/or activity in specific populations using a range of tools, such as quantitative proteomics, pharmacokinetic data for clinical probes/ transporter biomarkers, PBPK modelling and integration of these approaches.

    Article  CAS  PubMed  Google Scholar 

  24. Li, C. Y. et al. Optimized renal transporter quantification by using aquaporin 1 and aquaporin 2 as anatomical markers: application in characterizing the ontogeny of renal transporters and its correlation with hepatic transporters in paired human samples. AAPS J. 21, 88 (2019).

    Article  PubMed  Google Scholar 

  25. van Groen, B. D. et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol. Rev. 73, 597–678 (2021).

    Article  PubMed  Google Scholar 

  26. Kiss, M. et al. Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug. Metab. Dispos. 49, 1038–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Emoto, C. et al. PBPK model of morphine incorporating developmental changes in hepatic OCT1 and UGT2B7 proteins to explain the variability in clearances in neonates and small infants. CPT Pharmacomet. Syst. Pharmacol. 7, 464–473 (2018).

    Article  CAS  Google Scholar 

  28. Zgheib, N. K. & Branch, R. A. Drug metabolism and liver disease: a drug-gene-environment interaction. Drug. Metab. Rev. 49, 35–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Evers, R. et al. Disease-associated changes in drug transporters may impact the pharmacokinetics and/or toxicity of drugs: a white paper from the International Transporter Consortium. Clin. Pharmacol. Ther. 104, 900–915 (2018). This paper reviews changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, discusses potential implications from a drug discovery and development perspective, and identifies opportunities to advance the field.

    Article  PubMed  Google Scholar 

  30. Kula, M. et al. Hepatobiliary function assessed by 99mTc-mebrofenin cholescintigraphy in the evaluation of fibrosis in chronic hepatitis: histopathological correlation. Nucl. Med. Commun. 31, 280–285 (2010).

    Article  PubMed  Google Scholar 

  31. Drozdzik, M. et al. Protein abundance of drug transporters in human hepatitis C livers. Int. J. Mol. Sci. 23, 7947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, J. et al. Effect of hepatic impairment on OATP1B activity: quantitative pharmacokinetic analysis of endogenous biomarker and substrate drugs. Clin. Pharmacol. Ther. 113, 1058–1069 (2022).

    Article  Google Scholar 

  33. Hatorp, V., Walther, K. H., Christensen, M. S. & Haug-Pihale, G. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J. Clin. Pharmacol. 40, 142–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. El-Khateeb, E., Achour, B., Al-Majdoub, Z. M., Barber, J. & Rostami-Hodjegan, A. Non-uniformity of changes in drug-metabolizing enzymes and transporters in liver cirrhosis: implications for drug dosage adjustment. Mol. Pharm. 18, 3563–3577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hui, C. K., Cheung, B. M. & Lau, G. K. Pharmacokinetics of pitavastatin in subjects with Child-Pugh A and B cirrhosis. Br. J. Clin. Pharmacol. 59, 291–297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ali, I. et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate.Clin. Pharmacol. Ther. 104, 749–756 (2017).

    Article  Google Scholar 

  37. Clarke, J. D., Novak, P., Lake, A. D., Hardwick, R. N. & Cherrington, N. J. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 37, 1074–1081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferslew, B. C. et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin. Pharmacol. Ther. 97, 419–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Canet, M. J. et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug. Metab. Dispos. 43, 829–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morgan, E. T. et al. Physiological regulation of drug metabolism and transport: pregnancy, microbiome, inflammation, infection, and fasting. Drug. Metab. Dispos. 46, 503–513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corrigan, G. et al. PAH extraction and estimation of plasma flow in human postischemic acute renal failure. Am. J. Physiol. 277, F312–F318 (1999).

    CAS  PubMed  Google Scholar 

  42. Kunin, M., Holtzman, E. J., Melnikov, S. & Dinour, D. Urinary organic anion transporter protein profiles in AKI. Nephrol. Dial. Transpl. 27, 1387–1395 (2012).

    Article  CAS  Google Scholar 

  43. Tatosian, D. A. et al. A Microdose cocktail to evaluate drug interactions in patients with renal impairment. Clin. Pharmacol. Ther. 109, 403–415 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Miners, J. O., Yang, X., Knights, K. M. & Zhang, L. The role of the kidney in drug elimination: transport, metabolism, and the impact of kidney disease on drug clearance. Clin. Pharmacol. Ther. 102, 436–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hsueh, C. H. et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3. Mol. Pharm. 13, 3130–3140 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ramezani, A. et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am. J. Kidney Dis. 67, 483–498 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Jarvinen, E. et al. The role of uptake and efflux transporters in the disposition of glucuronide and sulfate conjugates. Front. Pharmacol. 12, 802539 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Foley, S. E. et al. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 9, 183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, M., Zhou, S. Y., Fabriaga, E., Zhang, P. H. & Zhou, Q. Food-drug interactions precipitated by fruit juices other than grapefruit juice: an update review. J. Food Drug. Anal. 26, S61–S71 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dresser, G. K. et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71, 11–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Keiser, M. et al. The organic anion-transporting peptide 2B1 is localized in the basolateral membrane of the human jejunum and Caco-2 monolayers. J. Pharm. Sci. 106, 2657–2663 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Li, W. et al. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol. Res. 190, 106724 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. McFeely, S. J., Wu, L., Ritchie, T. K. & Unadkat, J. Organic anion transporting polypeptide 2B1 - More than a glass-full of drug interactions. Pharmacol. Ther. 196, 204–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Drozdzik, M. et al. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol. Pharm. 11, 3547–3555 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Couto, N. et al. Quantitative proteomics of clinically relevant drug-metabolizing enzymes and drug transporters and their intercorrelations in the human small intestine. Drug. Metab. Dispos. 48, 245–254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morita, T. et al. Inhibitory effects of cranberry juice and its components on intestinal OATP1A2 and OATP2B1: identification of avicularin as a novel inhibitor. J. Agric. Food Chem. 70, 3310–3320 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Misaka, S. et al. Exposure of fexofenadine, but not pseudoephedrine, is markedly decreased by green tea extract in healthy volunteers. Clin. Pharmacol. Ther. 112, 627–634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, L. X. et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: an in vitro and in vivo assessment. Br. J. Clin. Pharmacol. 73, 750–757 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Schwarz, U. I. et al. Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther. 81, 669–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, J. T. et al. Assessing transporter-mediated natural product-drug interactions via in vitro-in vivo extrapolation: clinical evaluation with a probe cocktail. Clin. Pharmacol. Ther. 109, 1342–1352 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Zamek-Gliszczynski, M. J. et al. Intestinal P-gp and putative hepatic OATP1B induction: international transporter consortium perspective on drug development implications. Clin. Pharmacol. Ther. 109, 55–64 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Rodrigues, A. D. et al. Induction of human intestinal and hepatic organic anion transporting polypeptides: where is the evidence for its relevance in drug-drug interactions? Drug. Metab. Dispos. 48, 205–216 (2020).

    Article  PubMed  Google Scholar 

  63. Brouwer, K. L. R. et al. In vitro methods to support transporter evaluation in drug discovery and development. Clin. Pharmacol. Ther. 94, 95–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Gertz, M. et al. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm. Res. 30, 761–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. US Food and Drug Administration. In vitro Drug Interaction Studies Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. https://www.fda.gov/media/134582/download (2020).

  66. Hayden, E. R. et al. Regulation of OATP1B1 function by tyrosine kinase-mediated phosphorylation. Clin. Cancer Res. 27, 4301–4310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo, C., LaCerte, C., Edwards, J. E., Brouwer, K. R. & Brouwer, K. L. R. Farnesoid X receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich-cultured human hepatocytes: functional evidence and mechanisms. J. Pharmacol. Exp. Ther. 365, 413–421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kummu, M. et al. Cadmium inhibits ABCG2 transporter function in BeWo choriocarcinoma cells and MCF-7 cells overexpressing ABCG2. Placenta 33, 859–865 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Grimstein, M. et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. food and drug administration’s office of clinical pharmacology. J. Pharm. Sci. 108, 21–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: an update on the 2018-2019 submissions to the US FDA’s office of clinical pharmacology. J. Clin. Pharmacol. 60, S160–S178 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, Y. et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin. Pharmacol. Ther. 104, 865–889 (2018). This manuscript illustrates current best practices and outlines practical strategies for selecting appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma concentrations resulting from transporter modulation, and discusses the use of these data in the application of PBPK modeling for human pharmacokinetic, efficacy and safety assessment in drug development.

    Article  PubMed  Google Scholar 

  72. Taskar, K. S. et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations. Clin. Pharmacol. Ther. 107, 1082–1115 (2020). This review provides a critical analysis of the current trends in PBPK modeling of transporter-mediated DDIs and corresponding knowledge gaps, and it provides future directions to improve model predictions and to promote continuous application of PBPK modeling in this challenging area.

    Article  PubMed  Google Scholar 

  73. Varma, M. V. et al. Extended Clearance Classification System (ECCS) informed approach for evaluating investigational drugs as substrates of drug transporters. Clin. Pharmacol. Ther. 102, 33–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Prasad, B. et al. Toward a consensus on applying quantitative liquid chromatography-tandem mass spectrometry proteomics in translational pharmacology research: a white paper. Clin. Pharmacol. Ther. 106, 525–543 (2019).

    Article  PubMed  Google Scholar 

  75. Storelli, F. et al. The next frontier in ADME science: predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol. Ther. 238, 108271 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Sachar, M., Kumar, V., Gormsen, L. C., Munk, O. L. & Unadkat, J. D. Successful prediction of positron emission tomography-imaged metformin hepatic uptake clearance in humans using the quantitative proteomics-informed relative expression factor approach. Drug. Metab. Dispos. 48, 1210–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Kumar, V. et al. The importance of incorporating OCT2 plasma membrane expression and membrane potential in IVIVE of metformin renal secretory clearance. Drug. Metab. Dispos. 46, 1441–1445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wegler, C. et al. Proteomics-informed prediction of rosuvastatin plasma profiles in patients with a wide range of body weight. Clin. Pharmacol. Ther. 109, 762–771 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Alrubia, S., Al-Majdoub, Z. M., Achour, B., Rostami-Hodjegan, A. & Barber, J. Quantitative assessment of the impact of crohn’s disease on protein abundance of human intestinal drug-metabolising enzymes and transporters. J. Pharm. Sci. 111, 2917–2929 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. van der Made, T. K. et al. Quantitative translation of microfluidic transporter in vitro data to in vivo reveals impaired albumin-facilitated indoxyl sulfate secretion in chronic kidney disease. Mol. Pharm. 16, 4551–4562 (2019).

    Article  PubMed  Google Scholar 

  81. Burt, H. J. et al. Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur. J. Pharm. Sci. 88, 70–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Mathialagan, S. et al. Quantitative prediction of human renal clearance and drug-drug interactions of organic anion transporter substrates using in vitro transport data: a relative activity factor approach. Drug. Metab. Dispos. 45, 409–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Costales, C. et al. Quantitative prediction of breast cancer resistant protein mediated drug-drug interactions using physiologically-based pharmacokinetic modeling. CPT Pharmacomet. Syst. Pharmacol. 10, 1018–1031 (2021).

    Article  CAS  Google Scholar 

  84. Scotcher, D. et al. Physiologically based pharmacokinetic modeling of transporter-mediated hepatic disposition of imaging biomarker gadoxetate in rats. Mol. Pharm. 18, 2997–3009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ito, K., Sjostedt, N., Malinen, M. M., Guo, C. & Brouwer, K. L. R. Hepatic transporter alterations by nuclear receptor agonist T0901317 in sandwich-cultured human hepatocytes: proteomic analysis and PBPK modeling to evaluate drug-drug interaction risk. J. Pharmacol. Exp. Ther. 373, 261–268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, J., Jiang, J., Wu, J., Bao, X. & Sanai, N. Physiologically based pharmacokinetic modeling of central nervous system pharmacokinetics of CDK4/6 inhibitors to guide selection of drug and dosing regimen for brain cancer treatment. Clin. Pharmacol. Ther. 109, 494–506 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Bowman, C. et al. Evaluation of bottom-up modeling of the blood-brain barrier to improve brain penetration prediction via physiologically based pharmacokinetic modeling. Biopharm. Drug. Dispos. 44, 60–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Lang, J., Vincent, L., Chenel, M., Ogungbenro, K. & Galetin, A. Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions. Eur. J. Pharm. Sci. 165, 105932 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Y. et al. Physiologically-based pharmacokinetic model-informed drug development for fenebrutinib: understanding complex drug-drug interactions. CPT Pharmacomet. Syst. Pharmacol. 9, 332–341 (2020).

    Article  CAS  Google Scholar 

  90. Vildhede, A. et al. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug. Metab. Dispos. 42, 1210–1218 (2014).

    Article  PubMed  Google Scholar 

  91. Bi, Y. A. et al. Quantitative contribution of six major transporters to the hepatic uptake of drugs: “SLC-Phenotyping” using primary human hepatocytes. J. Pharmacol. Exp. Ther. 370, 72–83 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Barnett, S. et al. Gaining mechanistic insight into coproporphyrin i as endogenous biomarker for OATP1B-mediated drug-drug interactions using population pharmacokinetic modeling and simulation. Clin. Pharmacol. Ther. 104, 564–574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ahmad, A. et al. Population pharmacokinetic modeling and simulation to support qualification of pyridoxic acid as endogenous biomarker of OAT1/3 renal transporters. CPT Pharmacomet. Syst. Pharmacol. 10, 467–477 (2021).

    Article  CAS  Google Scholar 

  94. Kimoto, E. et al. Biomarker-Informed model-based risk assessment of organic anion transporting polypeptide 1B mediated drug-drug interactions. Clin. Pharmacol. Ther. 111, 404–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Tess, D. A. et al. Effect of a ketohexokinase inhibitor (PF-06835919) on in vivo OATP1B activity: integrative risk assessment using endogenous biomarker and a probe drug. Clin. Pharmacol. Ther. 112, 605–614 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Pfeifer, N. D. et al. Effect of Ritonavir on (99 m)Technetium-Mebrofenin disposition in humans: a semi-PBPK modeling and in vitro approach to predict transporter-mediated DDIs. CPT Pharmacomet. Syst. Pharmacol. 2, e20 (2013).

    Article  CAS  Google Scholar 

  97. Bowman, C. M., Ma, F., Mao, J. & Chen, Y. Examination of Physiologically-Based Pharmacokinetic Models of Rosuvastatin. CPT Pharmacomet. Syst. Pharmacol. 10, 5–17 (2021).

    Article  CAS  Google Scholar 

  98. Yamazaki, S. et al. Physiologically-based pharmacokinetic modeling approach to predict rifampin-mediated intestinal P-glycoprotein induction. CPT Pharmacomet. Syst. Pharmacol. 8, 634–642 (2019).

    Article  CAS  Google Scholar 

  99. Moj, D. et al. A Comprehensive whole-body physiologically based pharmacokinetic model of dabigatran etexilate, dabigatran and dabigatran glucuronide in healthy adults and renally impaired patients. Clin. Pharmacokinet. 58, 1577–1593 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Vasilogianni, A. M. et al. Proteomics of colorectal cancer liver metastasis: a quantitative focus on drug elimination and pharmacodynamics effects. Br. J. Clin. Pharmacol. 88, 1811–1823 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Vildhede, A., Kimoto, E., Pelis, R. M., Rodrigues, A. D. & Varma, M. V. S. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin. Pharmacol. Ther. 107, 1128–1137 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Prasad, B. et al. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin. Pharmacol. Ther. 100, 362–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Streekstra, E. J., Russel, F. G. M., van de Steeg, E. & de Wildt, S. N. Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy. Drug. Discov. Today Technol. 39, 31–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Salerno, S. N., Burckart, G. J., Huang, S. M. & Gonzalez, D. Pediatric drug-drug interaction studies: barriers and opportunities. Clin. Pharmacol. Ther. 105, 1067–1070 (2019).

    Article  PubMed  Google Scholar 

  105. Tan, S. P. F., Scotcher, D., Rostami-Hodjegan, A. & Galetin, A. Effect of chronic kidney disease on the renal secretion via organic anion transporters 1/3: implications for physiologically-based pharmacokinetic modeling and dose adjustment. Clin. Pharmacol. Ther. 112, 643–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takita, H. et al. Coproporphyrin I as an endogenous biomarker to detect reduced OATP1B activity and shift in elimination route in chronic kidney disease. Clin. Pharmacol. Ther. 112, 615–626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tan, M. L. et al. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin. Pharmacol. Ther. 105, 719–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Bergman, A. et al. Effect of hepatic organic anion-transporting polypeptide 1b inhibition and chronic kidney disease on the pharmacokinetics of a liver-targeted glucokinase activator: a model-based evaluation. Clin. Pharmacol. Ther. 106, 792–802 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Tan, S. P. F. et al. Development of 4-Pyridoxic Acid PBPK model to support biomarker-informed evaluation of OAT1/3 inhibition and effect of chronic kidney disease. Clin. Pharmacol. Ther. 114, 1243–1253 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Vaidyanathan, J., Yoshida, K., Arya, V. & Zhang, L. Comparing various in vitro prediction criteria to assess the potential of a new molecular entity to inhibit organic anion transporting polypeptide 1B1. J. Clin. Pharmacol. 56, S59–S72 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Mathialagan, S., Feng, B., Rodrigues, A. D. & Varma, M. V. S. Drug-drug interactions involving renal OCT2/MATE transporters: clinical risk assessment may require endogenous biomarker-informed approach. Clin. Pharmacol. Ther. 110, 855–859 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Chu, X., Chan, G. H. & Evers, R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug-drug interactions. J. Pharm. Sci. 106, 2357–2367 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Rodrigues, A. D., Taskar, K. S., Kusuhara, H. & Sugiyama, Y. Endogenous probes for drug transporters: balancing vision with reality. Clin. Pharmacol. Ther. 103, 434–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Lai, Y. et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. J. Pharmacol. Exp. Ther. 358, 397–404 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Shen, H. et al. Evidence for the validity of pyridoxic acid (PDA) as a plasma-based endogenous probe for OAT1 and OAT3 function in healthy subjects. J. Pharmacol. Exp. Ther. 368, 136–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Willemin, M. E. et al. Clinical investigation on endogenous biomarkers to predict strong OAT-mediated drug-drug interactions. Clin. Pharmacokinet. 60, 1187–1199 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Mori, D. et al. Dose-dependent inhibition of OATP1B by rifampicin in healthy volunteers: comprehensive evaluation of candidate biomarkers and OATP1B probe drugs. Clin. Pharmacol. Ther. 107, 1004–1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Neuvonen, M. et al. Identification of glycochenodeoxycholate 3-O-glucuronide and glycodeoxycholate 3-O-glucuronide as highly sensitive and specific OATP1B1 biomarkers. Clin. Pharmacol. Ther. 109, 646–657 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Muller, F. et al. N(1)-Methylnicotinamide as biomarker for MATE-mediated renal drug-drug interactions: impact of cimetidine, rifampin, verapamil, and probenecid. Clin. Pharmacol. Ther. 113, 1070–1079 (2023).

    Article  PubMed  Google Scholar 

  120. Gessner, A. et al. A Metabolomic analysis of sensitivity and specificity of 23 previously proposed biomarkers for renal transporter-mediated drug-drug interactions.Clin. Pharmacol. Ther. 114, 1058–1072 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Neuvonen, M., Tornio, A., Hirvensalo, P., Backman, J. T. & Niemi, M. Performance of plasma coproporphyrin I and III as OATP1B1 biomarkers in humans. Clin. Pharmacol. Ther. 110, 1622–1632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chan, G. H. et al. Evaluation of the selectivity of several organic anion transporting polypeptide 1B biomarkers using relative activity factor method. Drug. Metab. Dispos. 51, 1089–1104 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Huh, Y. et al. Utilization of rosuvastatin and endogenous biomarkers in evaluating the impact of ritlecitinib on BCRP, OATP1B1, and OAT3 transporter activity. Pharm. Res. 40, 2639–2651 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yoshikado, T. et al. PBPK modeling of coproporphyrin I as an endogenous biomarker for drug interactions involving inhibition of hepatic OATP1B1 and OATP1B3. CPT Pharmacomet. Syst. Pharmacol. 7, 739–747 (2018).

    Article  CAS  Google Scholar 

  125. Turk, D. et al. Renal transporter-mediated drug-biomarker interactions of the endogenous substrates creatinine and N(1)-methylnicotinamide: a PBPK modeling approach. Clin. Pharmacol. Ther. 112, 687–698 (2022).

    Article  PubMed  Google Scholar 

  126. Takita, H. et al. PBPK model of coproporphyrin i: evaluation of the impact of SLCO1B1 genotype, ethnicity, and sex on its inter-individual variability. CPT Pharmacomet. Syst. Pharmacol. 10, 137–147 (2021).

    Article  CAS  Google Scholar 

  127. Kikuchi, R. et al. Utilization of OATP1B biomarker coproporphyrin-i to guide drug-drug interaction risk assessment: evaluation by the pharmaceutical industry. Clin. Pharmacol. Ther. 114, 1170–1183 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Cheung, K. W. K. et al. GDC-0810 pharmacokinetics and transporter-mediated drug interaction evaluation with an endogenous biomarker in the first-in-human, dose escalation study. Drug. Metab. Dispos. 47, 966–973 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Scotcher, D. et al. Mechanistic models as framework for understanding biomarker disposition: prediction of creatinine-drug interactions. CPT Pharmacomet. Syst. Pharmacol. 9, 282–293 (2020).

    Article  CAS  Google Scholar 

  130. Kenna, J. G. et al. Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? An International Transporter Consortium Perspective. Clin. Pharmacol. Ther. 104, 916–932 (2018). This manuscript highlights the importance of inhibition of the bile salt export pump (BSEP) as one of several mechanisms of drug-induced liver injury (DILI) that should be considered, along with other mechanisms, when evaluating potential DILI risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hafey, M. J. et al. Transporters and toxicity: insights from the International Transporter Consortium Workshop 4. Clin. Pharmacol. Ther. 112, 527–539 (2022). This paper highlights multiple ways in which toxicants and drugs interact with transporters to negatively affect therapeutic outcomes and/or cause adverse effects; specific examples focus on anti-cancer drug-induced organ damage, the role of transporters as a barrier in different tissues, and transporters in toxicity of metal ions.

    Article  PubMed  Google Scholar 

  132. Pan, G. Roles of hepatic drug transporters in drug disposition and liver toxicity. Adv. Exp. Med. Biol. 1141, 293–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Schuetz, J. D., Swaan, P. W. & Tweedie, D. J. The role of transporters in toxicity and disease. Drug. Metab. Dispos. 42, 541–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Anderson, J. T., Huang, K. M., Lustberg, M. B., Sparreboom, A. & Hu, S. Solute carrier transportome in chemotherapy-induced adverse drug reactions. Rev. Physiol. Biochem. Pharmacol. 183, 177–215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Uddin, M. E., Moseley, A., Hu, S. & Sparreboom, A. Contribution of membrane transporters to chemotherapy-induced cardiotoxicity. Basic. Clin. Pharmacol. Toxicol. 130, 36–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Hu, S., Huang, K. M., Adams, E. J., Loprinzi, C. L. & Lustberg, M. B. Recent developments of novel pharmacologic therapeutics for prevention of chemotherapy-induced peripheral neuropathy. Clin. Cancer Res. 25, 6295–6301 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huang, K. M. et al. Neuronal uptake transporters contribute to oxaliplatin neurotoxicity in mice. J. Clin. Invest. 130, 4601–4606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huang, K. M. et al. Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proc. Natl Acad. Sci. USA 118, e2020168118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leblanc, A. F. et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J. Clin. Invest. 128, 816–825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vora, B. et al. Drug-nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3). Am. J. Clin. Nutr. 111, 110–121 (2020).

    Article  PubMed  Google Scholar 

  141. Zhang, Q. et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug. Metab. Dispos. 42, 1656–1662 (2014).

    Article  PubMed  Google Scholar 

  142. Yoshikado, T. et al. Itraconazole-induced cholestasis: involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol. Pharmacol. 79, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Gill, M. W. et al. Mechanism of hepatobiliary toxicity of the LPA(1) antagonist BMS-986020 developed to treat idiopathic pulmonary fibrosis: contrasts with BMS-986234 and BMS-986278. Toxicol. Appl. Pharmacol. 438, 115885 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. International Council for Harmonisation. ICH Harmonised Guideline - Drug Interaction Studies M12 (Draft version). https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m12-drug-interaction-studies-step-2b_en.pdf (2022).

  145. Zhou, T., Arya, V. & Zhang, L. Comparing various in vitro prediction methods to assess the potential of a drug to inhibit P-glycoprotein (P-gp) transporter in vivo. J. Clin. Pharmacol. 59, 1049–1060 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, S. C., Arya, V., Yang, X., Volpe, D. A. & Zhang, L. Evaluation of transporters in drug development: Current status and contemporary issues. Adv. Drug. Deliv. Rev. 116, 100–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Yoshida, K. et al. In vitro-in vivo extrapolation of metabolism- and transporter-mediated drug-drug interactions-overview of basic prediction methods. J. Pharm. Sci. 106, 2209–2213 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. US Food and Drug Administration. Food and drug administration integrated review for NDA 212887, Cabotegravir. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212887Orig1s000,212888Orig1s000IntegratedR.pdf (2021).

  149. US Food and Drug Administration. Food and drug administration integrated review for NDA 216196, Mitapivat. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/216196Orig1s000IntegratedR.pdf (2022).

  150. US Food and Drug Administration. Food and drug administration integrated review for NDA 215206, Atogepant. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215206Orig1s000IntegratedR.pdf (2021).

  151. Arya, V., Reynolds, K. S. & Yang, X. Using endogenous biomarkers to derisk assessment of transporter-mediated drug-drug interactions: a scientific perspective. J. Clin. Pharmacol. 62, 1501–1506 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Jones, N. S. et al. Complex DDI by fenebrutinib and the use of transporter endogenous biomarkers to elucidate the mechanism of DDI. Clin. Pharmacol. Ther. 107, 269–277 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Zamek-Gliszczynski, M. J., Chu, X., Polli, J. W., Paine, M. F. & Galetin, A. Understanding the transport properties of metabolites: case studies and considerations for drug development. Drug. Metab. Dispos. 42, 650–664 (2014).

    Article  PubMed  Google Scholar 

  154. Taskar, K. S. et al. Clinical relevance of hepatic and renal P-gp/BCRP inhibition of drugs: an international transporter consortium perspective. Clin. Pharmacol. Ther. 112, 573–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Elmeliegy, M., Vourvahis, M., Guo, C. & Wang, D. D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: review of clinical drug-drug interaction studies. Clin. Pharmacokinet. 59, 699–714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Giacomini, K. M. et al. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: outlook from the international transporter consortium. Clin. Pharmacol. Ther. 112, 540–561 (2022). This state-of-the-art manuscript describes a range of technologically driven advances in membrane transporter research including the large number of high-resolution structures enabled by cryo-EM and AlphaFold, new discoveries demonstrating modulation of transporter function by gut microbiome products and pre-clinical and clinical tools such as proteomics, advances in modelling and simulation and biomarkers that provide quantitative estimates of in vivo transporter function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bai, X., Moraes, T. F. & Reithmeier, R. A. F. Structural biology of solute carrier (SLC) membrane transport proteins. Mol. Membr. Biol. 34, 1–32 (2017).

    Article  PubMed  Google Scholar 

  159. Hou, W. T. et al. Plastic structures for diverse substrates: a revisit of human ABC transporters. Proteins 90, 1749–1765 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, Q. et al. Recognition of cyclic dinucleotides and folates by human SLC19A1. Nature 612, 170–176 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Shan, Z. et al. Cryo-EM structures of human organic anion transporting polypeptide OATP1B1. Cell Res. 33, 940–951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ciuta, A. D. et al. Structure of human drug transporters OATP1B1 and OATP1B3. Nat. Commun. 14, 5774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Suo, Y. et al. Molecular basis of polyspecific drug binding and transport by OCT1 and OCT2. Nat. Struct. Mol. Biol. 30, 1001–1011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Khanppnavar, B. et al. Structural basis of organic cation transporter-3 inhibition. Nat. Commun. 13, 6714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Simoff, I. et al. Complete knockout of endogenous Mdr1 (Abcb1) in MDCK cells by CRISPR-Cas9. J. Pharm. Sci. 105, 1017–1021 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Chen, E. C. et al. Evaluating the utility of canine Mdr1 knockout madin-darby canine kidney I cells in permeability screening and efflux substrate determination. Mol. Pharm. 15, 5103–5113 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Karlgren, M. et al. A CRISPR-Cas9 generated MDCK cell line expressing human MDR1 without endogenous canine MDR1 (cABCB1): an improved tool for drug efflux studies. J. Pharm. Sci. 106, 2909–2913 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Wegler, C. et al. Expanding the efflux in vitro assay toolbox: a CRISPR-Cas9 edited MDCK cell line with human BCRP and completely lacking canine MDR1. J. Pharm. Sci. 110, 388–396 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Feng, D. et al. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front. Pharmacol. 13, 1015940 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sake, J. A. et al. Knockout of ABCC1 in NCI-H441 cells reveals CF to be a suboptimal substrate to study MRP1 activity in organotypic in vitro models. Eur. J. Pharm. Sci. 181, 106364 (2022).

    Article  PubMed  Google Scholar 

  171. Guan, M. et al. Generation of a homozygous ABCA7-knockout human iPSC line using the CRISPR/Cas9 system. Stem Cell Res. 66, 103000 (2022).

    Article  PubMed  Google Scholar 

  172. Magdy, T. et al. Identification of drug transporter genomic variants and inhibitors that protect against doxorubicin-induced cardiotoxicity. Circulation 145, 279–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Ma, X. et al. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm. Sin. B 10, 850–860 (2020).

    Article  PubMed  Google Scholar 

  174. Gou, X., Ran, F., Yang, J., Ma, Y. & Wu, X. Construction and evaluation of a novel organic anion transporter 1/3 CRISPR/Cas9 double-knockout rat model. Pharmaceutics 14, 2307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liang, C. et al. Development and characterization of MDR1 (Mdr1a/b) CRISPR/Cas9 knockout rat model. Drug. Metab. Dispos. 47, 71–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Girardi, E. et al. A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat. Chem. Biol. 16, 469–478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sapp, V. et al. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci. Rep. 11, 13866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Akinci, E. et al. Elucidation of remdesivir cytotoxicity pathways through genome-wide CRISPR-Cas9 screening and transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2020.08.27.270819 (2020).

  179. Rebsamen, M. et al. Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Sci. Alliance 5, e202201404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zamek-Gliszczynski, M. J. et al. Transporters in drug development: International Transporter Consortium update on emerging transporters of clinical importance. Clin. Pharmacol. Ther. 112, 485–500 (2022). This manuscript reviews up-to-date clinical evidence for the importance of various transporters in drug–drug interactions and the potential for altered drug efficacy and safety; for the first time, drug–nutrient interactions leading to nutrient deficiencies are also considered.

    Article  PubMed  Google Scholar 

  181. Watanabe, T., Kusuhara, H., Maeda, K., Shitara, Y. & Sugiyama, Y. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearancse and distribution of pravastatin in humans. J. Pharmacol. Exp. Ther. 328, 652–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Scotcher, D., Jones, C. R., Galetin, A. & Rostami-Hodjegan, A. Delineating the role of various factors in renal disposition of digoxin through application of physiologically based kidney model to renal impairment populations. J. Pharmacol. Exp. Ther. 360, 484–495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wiebe, S. T. et al. Validation of a drug transporter probe cocktail using the prototypical inhibitors rifampin, probenecid, verapamil, and cimetidine. Clin. Pharmacokinet. 59, 1627–1639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mochizuki, T. et al. Effect of cyclosporin A and impact of dose staggering on OATP1B1/1B3 endogenous substrates and drug probes for assessing clinical drug interactions. Clin. Pharmacol. Ther. 111, 1315–1323 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Barth, A. et al. Clinical assessment of gepotidacin (GSK2140944) as a victim and perpetrator of drug-drug interactions via CYP3A metabolism and transporters. Clin. Transl. Sci. 16, 647–661 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hibma, J. E. et al. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacokinet. 55, 711–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Song, I. H. et al. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J. Acquir. Immune Defic. Syndr. 72, 400–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ghibellini, G., Leslie, E. M. & Brouwer, K. L. R. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol. Pharm. 3, 198–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nakaoka, T. et al. Clinical evaluation of [(18)F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug. Metab. Pharmacokinet. 44, 100449 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Melillo, N. et al. Use of in vivo imaging and physiologically-based kinetic modelling to predict hepatic transporter mediated drug-drug interactions in rats. Pharmaceutics 15, 896 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zamek-Gliszczynski, M. J. et al. Clinical extrapolation of the effects of dolutegravir and other HIV integrase inhibitors on folate transport pathways. Drug. Metab. Dispos. 47, 890–898 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug. Discov. 14, 543–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. US Food and Drug Administration. Food and Drug Administration Drug Label for Farxiga, dapagliflozin (revised 05/2020). https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202293s020lbl.pdf (2020).

  194. US Food and Drug Administration. Food and Drug Administration Drug Label for Invokana, canagliflozin (revised 07/2017). https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/204042s026lbl.pdf (2017).

  195. US Food and Drug Administration. Food and Drug Administration Drug Label for Jardiance, empagliflozin (revised 6/2023). https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s042lbl.pdf (2023).

  196. Shi, X. et al. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2020-present). Expert. Opin. Ther. Pat. 32, 1175–1184 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Dong, Y. et al. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016-2019). Expert. Opin. Ther. Pat. 29, 871–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, Y. et al. Metabolomic profiling and drug interaction characterization reveal riboflavin as a breast cancer resistance protein -specific endogenous biomarker that demonstrates prediction of transporter activity in vivo. Drug. Metab. Dispos. 51, 851–861 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Rodrigues, D. & Rowland, A. From endogenous compounds as biomarkers to plasma-derived nanovesicles as liquid biopsy; has the golden age of translational pharmacokinetics-absorption, distribution, metabolism, excretion-drug-drug interaction science finally arrived? Clin. Pharmacol. Ther. 105, 1407–1420 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Rowland, A. et al. Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. Br. J. Clin. Pharmacol. 85, 216–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Achour, B. et al. Liquid biopsy enables quantification of the abundance and interindividual variability of hepatic enzymes and transporters. Clin. Pharmacol. Ther. 109, 222–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Rodrigues, A. D. et al. Exploring the use of serum-derived small extracellular vesicles as liquid biopsy to study the induction of hepatic cytochromes P450 and organic anion transporting polypeptides. Clin. Pharmacol. Ther. 110, 248–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Achour, B. et al. Liquid biopsy for patient characterization in cardiovascular disease: verification against markers of cytochrome P450 and P-Glycoprotein activities. Clin. Pharmacol. Ther. 111, 1268–1277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, Z. et al. Structural basis of ligand binding modes of human EAAT2. Nat. Commun. 13, 3329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Canul-Tec, J. C. et al. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J. 41, e108341 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Niu, Y. et al. Structural mechanism of SGLT1 inhibitors. Nat. Commun. 13, 6440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Niu, Y. et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 601, 280–284 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Coleman, J. A. et al. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. eLife 9, e56427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Coleman, J. A. et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Yan, R., Zhao, X., Lei, J. & Zhou, Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature 568, 127–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Yan, R. et al. Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discov. 7, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhao, Y. et al. Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat. Commun. 13, 2747 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wright, N. J. et al. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature 609, 1056–1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wright, N. J. & Lee, S. Y. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat. Struct. Mol. Biol. 26, 599–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kim, Y. & Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359, 915–919 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Urgaonkar, S. et al. Discovery and characterization of potent dual P-Glycoprotein and CYP3A4 inhibitors: design, synthesis, cryo-EM analysis, and biological evaluations. J. Med. Chem. 65, 191–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Nosol, K. et al. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc. Natl Acad. Sci. USA 117, 26245–26253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, F. et al. Structural identification of a hotspot on CFTR for potentiation. Science 364, 1184–1188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fiedorczuk, K. & Chen, J. Molecular structures reveal synergistic rescue of Delta508 CFTR by Trikafta modulators. Science 378, 284–290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhao, C. & MacKinnon, R. Molecular structure of an open human K(ATP) channel. Proc. Natl Acad. Sci. USA 118, e2112267118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wu, J. X. et al. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein Cell 9, 553–567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ding, D., Wang, M., Wu, J. X., Kang, Y. & Chen, L. The structural basis for the binding of repaglinide to the pancreatic K(ATP) channel. Cell Rep. 27, 1848–1857.e1844 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Wang, M., Wu, J. X. & Chen, L. Structural insights into the high selectivity of the anti-diabetic drug mitiglinide. Front. Pharmacol. 13, 929684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jackson, S. M. et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Kowal, J. et al. Structural basis of drug recognition by the multidrug transporter ABCG2. J. Mol. Biol. 433, 166980 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Orlando, B. J. & Liao, M. ABCG2 transports anticancer drugs via a closed-to-open switch. Nat. Commun. 11, 2264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ramsey, L. B. et al. PharmVar geneFocus: SLCO1B1. Clin. Pharmacol. Ther. 113, 782–793 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Liang, X. & Lai, Y. Overcoming the shortcomings of the extended-clearance concept: a framework for developing a physiologically-based pharmacokinetic (PBPK) model to select drug candidates involving transporter-mediated clearance. Expert. Opin. Drug. Metab. Toxicol. 17, 869–886 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Alluri, R. V., Li, R. & Varma, M. V. S. Transporter-enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert. Opin. Drug. Metab. Toxicol. 16, 387–401 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Yoshida, K., Jaochico, A., Mao, J. & Sangaraju, D. Glycochenodeoxycholate and glycodeoxycholate 3-O-glucuronides, but not hexadecanedioate and tetradecanedioate, detected weak inhibition of OATP1B caused by GDC-0810 in humans. Br. J. Clin. Pharmacol. 89, 1903–1907 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Hafey, M. J. et al. A two-tiered in vitro approach to de-risk drug candidates for potential bile salt export pump inhibition liabilities in drug discovery. Drug. Metab. Dispos. 48, 1147–1160 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Yang, K., Woodhead, J. L., Watkins, P. B., Howell, B. A. & Brouwer, K. L. R. Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin. Pharmacol. Ther. 96, 589–598 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Cundy, K. C., Li, Z. H., Hitchcock, M. J. & Lee, W. A. Pharmacokinetics of cidofovir in monkeys. Evidence for a prolonged elimination phase representing phosphorylated drug. Drug. Metab. Dispos. 24, 738–744 (1996).

    CAS  PubMed  Google Scholar 

  236. Wolf, D. L. et al. Pharmacokinetics and renal effects of cidofovir with a reduced dose of probenecid in HIV-infected patients with cytomegalovirus retinitis. J. Clin. Pharmacol. 43, 43–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  237. Gilead Sciences Inc. Cidofovir https://www.gilead.com/~/media/files/pdfs/medicines/other/vistide/vistide.pdf (2010).

  238. Root, C., Smith, C. D., Winegar, D. A., Brieaddy, L. E. & Lewis, M. C. Inhibition of ileal sodium-dependent bile acid transport by 2164U90. J. Lipid Res. 36, 1106–1115 (1995).

    Article  CAS  PubMed  Google Scholar 

  239. Johns Hopkins University. OMIM Database entry 601295. https://www.omim.org/entry/601295 (2022).

  240. Ferkingstad, E. et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat. Commun. 9, 5101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Renner, O. et al. A variant of the SLC10A2 gene encoding the apical sodium-dependent bile acid transporter is a risk factor for gallstone disease. PLoS ONE 4, e7321 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Yin, X. et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 13, 1644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Huang, H. C. et al. Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 2). J. Med. Chem. 48, 5853–5868 (2005).

    Article  CAS  PubMed  Google Scholar 

  244. Tremont, S. J. et al. Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 1). J. Med. Chem. 48, 5837–5852 (2005).

    Article  CAS  PubMed  Google Scholar 

  245. Tollefson, M. B. et al. A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 1,2-benzothiazepines. Bioorg. Med. Chem. Lett. 13, 3727–3730 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Shirley, M. Maralixibat: First Approval. Drugs 82, 71–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. US Food and Drug Administration. Food and Drug Administration Integrated Review for NDA 214662, Maralixibat. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214662Orig1s000IntegratedR.pdf (2021).

  248. Loomes, K. M. et al. Maralixibat for the treatment of PFIC: long-term, IBAT inhibition in an open-label, Phase 2 study. Hepatol. Commun. 6, 2379–2390 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Shneider, B. L. et al. Placebo-controlled randomized trial of an intestinal bile salt transport inhibitor for pruritus in alagille syndrome. Hepatol. Commun. 2, 1184–1198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shneider, B. L. et al. Impact of long-term administration of maralixibat on children with cholestasis secondary to Alagille syndrome. Hepatol. Commun. 6, 1922–1933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Thompson, R. J. et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: a randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol. Hepatol. 7, 830–842 (2022).

    Article  PubMed  Google Scholar 

  252. Yamamoto, A. et al. Rationale and design of a multicenter, single-group, open-label trial aiming at investigating the effectiveness of elobixibat for loss of defecation desire in patients with chronic constipation. Contemp. Clin. Trials Commun. 28, 100958 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Hegade, V. S. et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 389, 1114–1123 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Levy, C. et al. GLIMMER: a randomized phase 2b dose-ranging trial of linerixibat in primary biliary cholangitis patients with pruritus. Clin. Gastroenterol. Hepatol. 21, 1902–1912.e13 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the International Transporter Consortium (ITC) for review of the article before submission, in particular V. Arya, C. Lee, M. Piquette-Miller and M. Taub.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandra Galetin or Kathleen M. Giacomini.

Ethics declarations

Competing interests

A.G. is a deputy director of the Centre for Applied Pharmacokinetic Research, which is a consortium of companies including Genentech, Roche, Merck Serono, Takeda, Janssen, GSK, Servier, Amgen, Eli Lilly and Abbvie. She receives funding from A*STAR (BM/NDR/19/003), Research Council of Norway (15451500) and Asahi Kasei Pharma Corporation for her PhD students and trainees, and she is an unpaid President of the International Society for the Study of Xenobiotics. D.T. owns stock and/or stock options in Merck & Co., Inc. and receives free membership in the International Society for the Study of Xenobiotics. H.S. is an employee of Bristol Myers Squibb and owns stock and/or stock options in Bristol Myers Squibb. K.L.R.B. is co-inventor of the sandwich-cultured hepatocyte technology for quantification of biliary excretion (B-CLEAR) and related technologies, which have been licensed exclusively to Qualyst Transporter Solutions, acquired by BioIVT. She receives funding from a Certara Simcyp Grant and Partnership Scheme to support a PhD student in her laboratory and serves as an unpaid member of the scientific advisory committee for the International Society for the Study of Xenobiotics. K.Y. is an employee of Genentech and owns stock and/or stock options in Genentech and Roche. L.A. serves in an unpaid position for the Society of Toxicology. M.J.H. and X.C. are employees of Merck & Co., Inc. and own stock and/or stock options in Merck & Co., Inc. M.J.Z.-G. is an employee of GlaxoSmithKline and owns stock and/or stock options in GlaxoSmithKline. He also serves in an unpaid position for the American Society for Clinical Pharmacology and Therapeutics. M.V.S.V is an employee of Pfizer and owns stock and/or stock options in Pfizer. N.S. receives funding for graduate student support from the Sigrid Jusélius Foundation. R.E. is an employee of Johnson & Johnson and owns stock and/or stock options in Johnson & Johnson. Y.L. is an employee of Gilead Sciences, Inc. and owns stock and/or stock options in Gilead Sciences, Inc. K.M.G. and S.W.Y. are co-founders of Apricity Therapeutics, Inc., a transporter-based biotechnology company. A.R., J.Y., L.Z., P.M. and X.Y. declare no competing interests.

Additional information

Funding

A.R. is supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under award number 5T32GM007546. A.S. is supported, in part, by the NIH under award numbers R01CA238946, R01GM139936 and U24CA247648 and by the Ohio State University Comprehensive Cancer Center Pelotonia Foundation. K.L.R.B. is supported, in part, by the National Institute of General Medical Sciences of the NIH under award number R35GM122576. K.M.G. and S.W.Y. are supported, in part, by the NIH under award numbers R01GM139875, R01GM117163 and UC2HD113474. K.M.G. is also supported, in part by the grant number U01FD004979/U01FD005978 from the FDA, which supports the University of California–San Francisco (UCSF)-Stanford Center of Excellence in Regulatory Sciences and Innovation. L.A is supported, in part, by the NIH under award numbers UC2HD113039, P30ES005022, R01GM123330 and R01ES029275. N.S. is supported, in part, by the Sigrid Jusélius Foundation.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer The views in this paper are those of the authors and should not be construed to represent FDA’s views or policies.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galetin, A., Brouwer, K.L.R., Tweedie, D. et al. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov 23, 255–280 (2024). https://doi.org/10.1038/s41573-023-00877-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00877-1

  • Springer Nature Limited

Navigation