Skip to main content
Log in

Quantum state manipulation and cooling of ultracold molecules

  • Review Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

This article has been updated

Abstract

In recent years, an increasingly large variety of molecular species have been successfully cooled to low energies, and innovative techniques continue to emerge to reach ever more precise control of molecular motion. In this Review, we focus on two widely employed cooling techniques that have brought molecular gases into the quantum regime: association of ultracold atoms into quantum gases of molecules and direct laser cooling of molecules. These advances have brought into reality the capability to prepare and manipulate both internal and external states of molecules on a quantum mechanical level, opening the field of cold molecules to a wide range of scientific explorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Preparation of ultracold molecules from ultracold atoms.
Fig. 2: Laser cooling of molecules.
Fig. 3: Internal state control and single-molecule rotational coherence.
Fig. 4: Controlling molecular interactions.
Fig. 5: Advances in controlling intermediate-scale molecular systems.

Similar content being viewed by others

Change history

  • 13 June 2024

    In the version of the article initially published, refs. 9, 20, 23 and 39 were missing DOIs which have now been added to the HTML and PDF versions of the article.

References

  1. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  2. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2008).

    Article  Google Scholar 

  3. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. Di Rosa, M. D. Laser-cooling molecules. Eur. Phys. J. D 31, 395–402 (2004).

    Article  ADS  Google Scholar 

  5. Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).

    Article  ADS  Google Scholar 

  6. Leung, K. H. et al. Terahertz vibrational molecular clock with systematic uncertainty at the 10−14 level. Phys. Rev. X 13, 011047 (2023).

    Google Scholar 

  7. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

  8. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article  ADS  Google Scholar 

  9. Karman, T., Tomza, M. & Perez-Rios, J. Ultracold chemistry as a testbed for few-body physics. Nat. Phys. https://doi.org/10.1038/s41567-024-02467-3 (2024).

  10. Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).

    Article  ADS  Google Scholar 

  11. Liu, L. R. et al. Ergodicity breaking in rapidly rotating C60 fullerenes. Science 381, 778–783 (2023).

    Article  ADS  Google Scholar 

  12. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  ADS  Google Scholar 

  13. Park, J. J., Lu, Y.-K., Jamison, A. O., Tscherbul, T. V. & Ketterle, W. A Feshbach resonance in collisions between triplet ground-state molecules. Nature 614, 54–58 (2023).

    Article  ADS  Google Scholar 

  14. Yang, H. et al. Creation of an ultracold gas of triatomic molecules from an atom–diatomic molecule mixture. Science 378, 1009–1013 (2022).

    Article  ADS  Google Scholar 

  15. Zhang, Z., Nagata, S., Yao, K.-X. & Chin, C. Many-body chemical reactions in a quantum degenerate gas. Nat. Phys. 19, 1466–1470 (2023).

    Article  ADS  Google Scholar 

  16. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  Google Scholar 

  17. Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    Article  ADS  Google Scholar 

  18. Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023).

    Article  ADS  Google Scholar 

  19. Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

  20. Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02453-9 (2024).

  21. ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

  22. Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    Article  ADS  Google Scholar 

  23. DeMille, D., Hutzler, N. R. Rey, A.-M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02499-9 (2024).

  24. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  Google Scholar 

  25. Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    Article  ADS  Google Scholar 

  26. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  27. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  28. Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. USA 118, 2105063118 (2021).

    Article  Google Scholar 

  29. Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    Article  Google Scholar 

  30. Segev, Y. et al. Molecular beam brightening by shock-wave suppression. Sci. Adv. 3, 1602258 (2017).

  31. Wu, H. et al. Enhancing radical molecular beams by skimmer cooling. Phys. Chem. Chem. Phys. 20, 11615–11621 (2018).

    Article  Google Scholar 

  32. van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

    Article  Google Scholar 

  33. Reens, D., Wu, H., Langen, T. & Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 96, 63420 (2017).

    Article  ADS  Google Scholar 

  34. Segev, Y. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189–193 (2019).

    Article  ADS  Google Scholar 

  35. Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    Article  ADS  Google Scholar 

  36. Vogels, S. N. et al. Imaging resonances in low-energy NO-He inelastic collisions. Science 350, 787–790 (2015).

    Article  ADS  Google Scholar 

  37. Wu, X. et al. A cryofuge for cold-collision experiments with slow polar molecules. Science 358, 645–648 (2017).

    Article  ADS  Google Scholar 

  38. Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    Article  ADS  Google Scholar 

  39. Deiß, M., Willitsch, S. & Hecker-Denschlag, J. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. https://doi.org/10.1038/s41567-024-02440-0 (2024).

  40. Gadway, B. & Yan, B. Strongly interacting ultracold polar molecules. J. Phys. B 49, 152002 (2016).

    Article  ADS  Google Scholar 

  41. Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    Article  Google Scholar 

  42. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    Article  ADS  Google Scholar 

  43. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  44. Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article  ADS  Google Scholar 

  45. Aikawa, K. et al. Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett. 105, 203001 (2010).

    Article  ADS  Google Scholar 

  46. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  Google Scholar 

  47. Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    Article  ADS  Google Scholar 

  48. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  Google Scholar 

  49. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  Google Scholar 

  50. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article  ADS  Google Scholar 

  51. Voges, K. K. et al. Ultracold gas of bosonic 23Na39K ground-state molecules. Phys. Rev. Lett. 125, 083401 (2020).

    Article  ADS  Google Scholar 

  52. Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113002 (2023).

    Article  ADS  Google Scholar 

  53. Cairncross, W. B. et al. Assembly of a Rovibrational Ground State Molecule in an Optical Tweezer. Phys. Rev. Lett. 126, 123402 (2021).

  54. Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).

    Article  Google Scholar 

  55. Barbé, V. et al. Observation of Feshbach resonances between alkali and closed-shell atoms. Nat. Phys. 14, 881–884 (2018).

    Article  Google Scholar 

  56. Deiglmayr, J. et al. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133004 (2008).

    Article  ADS  Google Scholar 

  57. Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article  ADS  Google Scholar 

  58. Frye, M. D., Cornish, S. L. & Hutson, J. M. Prospects of forming high-spin polar molecules from ultracold atoms. Phys. Rev. X 10, 041005 (2020).

    Google Scholar 

  59. Schäfer, F., Mizukami, N. & Takahashi, Y. Feshbach resonances of large-mass-imbalance Er–Li mixtures. Phys. Rev. A 105, 012816 (2022).

    Article  ADS  Google Scholar 

  60. Marco, L. D. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  61. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article  ADS  Google Scholar 

  62. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article  ADS  Google Scholar 

  63. Duda, M. et al. Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear molecules. Nat. Phys. 19, 720–725 (2023).

    Article  Google Scholar 

  64. Cao, J. et al. Preparation of a quantum degenerate mixture of 23Na40K molecules and 40K atoms. Phys. Rev. A 107, 013307 (2023).

    Article  ADS  Google Scholar 

  65. Bigagli, N. et al. Observation of Bose–Einstein condensation of dipolar molecules. Preprint at https://arxiv.org/abs/2312.10965 (2023).

  66. Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

    Article  ADS  Google Scholar 

  67. Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).

    Article  ADS  Google Scholar 

  68. Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    Article  ADS  Google Scholar 

  69. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules. Science 327, 853–857 (2010).

    Article  ADS  Google Scholar 

  70. Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

    Article  ADS  Google Scholar 

  71. Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

  72. Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010).

    Article  ADS  Google Scholar 

  73. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article  ADS  Google Scholar 

  74. Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    Article  ADS  Google Scholar 

  75. Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2018).

    Article  ADS  Google Scholar 

  76. McCarron, D. Laser cooling and trapping molecules. J. Phys. B 51, 212001 (2018).

    Article  Google Scholar 

  77. Fitch, N. J. & Tarbutt, M. R. in Advances in Atomic, Molecular, and Optical Physics Vol. 70 (eds Dimauro, L. F. et al) 157–262 (Academic Press, 2021).

  78. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  79. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  Google Scholar 

  80. Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article  ADS  Google Scholar 

  81. Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Article  ADS  Google Scholar 

  82. Yeo, M. et al. Rotational state microwave mixing for laser cooling of complex diatomic molecules. Phys. Rev. Lett. 114, 223003 (2015).

    Article  ADS  Google Scholar 

  83. Ellis, A. M. Main group metal–ligand interactions in small molecules: new insights from laser spectroscopy. Int. Rev. Phys. Chem. 20, 551–590 (2001).

    Article  Google Scholar 

  84. Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    Google Scholar 

  85. Collopy, A. L., Hummon, M. T., Yeo, M., Yan, B. & Ye, J. Prospects for a narrow line MOT in YO. New J. Phys. 17, 55008 (2015).

    Article  Google Scholar 

  86. Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).

    Article  ADS  Google Scholar 

  87. Augenbraun, B. L. et al. Direct laser cooling of polyatomic molecules. Adv. At. Mol. Opt. Phys. 72, 89–182 (2023).

    Article  Google Scholar 

  88. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  ADS  Google Scholar 

  89. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article  ADS  Google Scholar 

  90. Ivanov, M. V., Bangerter, F. H., Wójcik, P. & Krylov, A. I. Toward ultracold organic chemistry: prospects of laser cooling large organic molecules. J. Phys. Chem. Lett. 11, 6670–6676 (2020).

    Article  Google Scholar 

  91. Zhu, G.-Z. et al. Functionalizing aromatic compounds with optical cycling centres. Nat. Chem. 14, 995–999 (2022).

    Article  Google Scholar 

  92. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article  ADS  Google Scholar 

  93. Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    Google Scholar 

  94. Maison, D. E., Flambaum, V. V., Hutzler, N. R. & Skripnikov, L. V. Electronic structure of the ytterbium monohydroxide molecule to search for axionlike particles. Phys. Rev. A 103, 022813 (2021).

    Article  ADS  Google Scholar 

  95. Kogel, F., Rockenhäuser, M., Albrecht, R. & Langen, T. A laser cooling scheme for precision measurements using fermionic barium monofluoride (137Ba19F) molecules. New J. Phys. 23, 095003 (2021).

    Article  ADS  Google Scholar 

  96. Zeng, Y. et al. Optical cycling in polyatomic molecules with complex hyperfine structure. Phys. Rev. A 108, 012813 (2023).

    Article  ADS  Google Scholar 

  97. Tarbutt, M. R. Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 17, 015007 (2015).

    Article  ADS  Google Scholar 

  98. Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).

    Article  ADS  Google Scholar 

  99. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article  ADS  Google Scholar 

  100. Shaw, J. C., Schnaubelt, J. C. & McCarron, D. J. Resonance Raman optical cycling for high-fidelity fluorescence detection of molecules. Phys. Rev. Res. 3, 042041 (2021).

    Article  Google Scholar 

  101. Rockenhäuser, M., Kogel, F., Pultinevicius, E. & Langen, T. Absorption spectroscopy for laser cooling and high-fidelity detection of barium monofluoride molecules. Phys. Rev. A 108, 062812 (2023).

    Article  ADS  Google Scholar 

  102. Truppe, S. et al. A buffer gas beam source for short, intense and slow molecular pulses. J. Mod. Opt. 65, 648–656 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  103. Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).

    Article  ADS  Google Scholar 

  104. Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).

    Article  ADS  Google Scholar 

  105. Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    Article  ADS  Google Scholar 

  106. Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    Article  ADS  Google Scholar 

  107. McCarron, D. J., Steinecker, M. H., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).

    Article  ADS  Google Scholar 

  108. Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    Article  Google Scholar 

  109. Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    Article  ADS  Google Scholar 

  110. Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).

    Article  ADS  Google Scholar 

  111. Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of Λ-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).

    Article  ADS  Google Scholar 

  112. Burau, J. J., Aggarwal, P., Mehling, K. & Ye, J. Blue-detuned magneto-optical trap of molecules. Phys. Rev. Lett. 130, 193401 (2023).

    Article  ADS  Google Scholar 

  113. Fitch, N. J. & Tarbutt, M. R. Principles and design of a Zeeman–Sisyphus decelerator for molecular beams. ChemPhysChem 17, 3609–3623 (2016).

    Article  Google Scholar 

  114. Petzold, M., Kaebert, P., Gersema, P., Siercke, M. & Ospelkaus, S. A Zeeman slower for diatomic molecules. New J. Phys. 20, 042001 (2018).

    Article  ADS  Google Scholar 

  115. Augenbraun, B. L. et al. Zeeman–Ssisyphus deceleration of molecular beams. Phys. Rev. Lett. 127, 263002 (2021).

    Article  ADS  Google Scholar 

  116. Langin, T. K. & DeMille, D. Toward improved loading, cooling, and trapping of molecules in magneto-optical traps. New J. Phys. 25, 043005 (2023).

    Article  ADS  Google Scholar 

  117. Jadbabaie, A., Pilgram, N. H., Kłos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).

    Article  ADS  Google Scholar 

  118. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article  ADS  Google Scholar 

  119. Jurgilas, S. et al. Collisions between ultracold molecules and atoms in a magnetic trap. Phys. Rev. Lett. 126, 153401 (2021).

    Article  ADS  Google Scholar 

  120. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  ADS  Google Scholar 

  121. Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 43401 (2020).

    Article  ADS  Google Scholar 

  122. Aldegunde, J., Rivington, B. A., Żuchowski, P. S. & Hutson, J. M. Hyperfine energy levels of alkali–metal dimers: ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008).

    Article  ADS  Google Scholar 

  123. Guo, M., Ye, X., He, J., Quéméner, G. & Wang, D. High-resolution internal state control of ultracold 23Na87Rb molecules. Phys. Rev. A 97, 020501 (2018).

    Article  ADS  Google Scholar 

  124. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  Google Scholar 

  125. Will, S. A., Park, J. W., Yan, Z. Z., Loh, H. & Zwierlein, M. W. Coherent microwave control of ultracold 23Na40K molecules. Phys. Rev. Lett. 116, 225306 (2016).

    Article  ADS  Google Scholar 

  126. Gregory, P. D., Aldegunde, J., Hutson, J. M. & Cornish, S. L. Controlling the rotational and hyperfine state of ultracold 87Rb133Cs molecules. Phys. Rev. A 94, 041403 (2016).

    Article  ADS  Google Scholar 

  127. Blackmore, J. A., Gregory, P. D., Bromley, S. L. & Cornish, S. L. Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields. Phys. Chem. Chem. Phys. 22, 27529 (2020).

    Article  Google Scholar 

  128. Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, 0083 (2018).

    Article  ADS  Google Scholar 

  129. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  130. Wall, M., Hazzard, K. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. A. & Novikova, I.) Ch. 1 (World Scientific, 2015).

  131. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article  ADS  Google Scholar 

  132. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  Google Scholar 

  133. Blackmore, J. A. et al. Controlling the ac Stark effect of RbCs with dc electric and magnetic fields. Phys. Rev. A 102, 053316 (2020).

    Article  ADS  Google Scholar 

  134. Bause, R. et al. Tune-out and magic wavelengths for ground-state 23Na40K molecules. Phys. Rev. Lett. 125, 023201 (2020).

    Article  ADS  Google Scholar 

  135. He, J. et al. Characterization of the lowest electronically excited-state ro-vibrational level of 23Na87Rb. New J. Phys. 23, 115003 (2021).

    Article  ADS  Google Scholar 

  136. Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. https://doi.org/10.1038/s41567-023-02328-5 (2024).

  137. Tscherbul, T. V., Ye, J. & Rey, A. M. Robust nuclear spin entanglement via dipolar interactions in polar molecules. Phys. Rev. Lett. 130, 143002 (2023).

    Article  ADS  Google Scholar 

  138. Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

  139. Lin, J., He, J., Jin, M., Chen, G. & Wang, D. Seconds-scale coherence on nuclear spin transitions of ultracold polar molecules in 3D optical lattices. Phys. Rev. Lett. 128, 223201 (2022).

    Article  ADS  Google Scholar 

  140. Böttcher, F. et al. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Prog. Phys. 84, 012403 (2020).

    Article  ADS  Google Scholar 

  141. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2023).

    Article  ADS  Google Scholar 

  142. Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular Bose–Einstein condensates. Phys. Rev. Res. 4, 013235 (2022).

    Article  Google Scholar 

  143. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article  ADS  Google Scholar 

  144. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article  ADS  Google Scholar 

  145. Avdeenkov, A. V., Kajita, M. & Bohn, J. L. Suppression of inelastic collisions of polar 1Σ state molecules in an electrostatic field. Phys. Rev. A 73, 022707 (2006).

    Article  ADS  Google Scholar 

  146. Gorshkov, A. V. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008).

    Article  ADS  Google Scholar 

  147. Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).

    Article  ADS  Google Scholar 

  148. Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).

    Article  ADS  Google Scholar 

  149. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    Article  ADS  Google Scholar 

  150. de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article  Google Scholar 

  151. Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).

    Article  ADS  Google Scholar 

  152. Guo, M. et al. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8, 041044 (2018).

    Google Scholar 

  153. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    Article  ADS  Google Scholar 

  154. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    Article  ADS  Google Scholar 

  155. Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Article  Google Scholar 

  156. Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).

    Article  ADS  Google Scholar 

  157. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article  ADS  Google Scholar 

  158. Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    Article  Google Scholar 

  159. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, abg9502 (2021).

  160. Chen, X.-Y. et al. Field-linked resonances of polar molecules. Nature 614, 59–63 (2023).

    Article  ADS  Google Scholar 

  161. Quéméner, G., Bohn, J. L. & Croft, J. F. E. Electroassociation of ultracold dipolar molecules into tetramer field-linked states. Phys. Rev. Lett. 131, 043402 (2023).

    Article  ADS  Google Scholar 

  162. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article  ADS  Google Scholar 

  163. Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006–1010 (2022).

  164. Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).

    Article  Google Scholar 

  165. Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. X 13, 031032 (2023).

    Google Scholar 

  166. Anderegg, L. Ultracold Molecules in Optical Arrays: from Laser Cooling to Molecular Collisions. PhD dissertation, Harvard Univ. (2019).

Download references

Acknowledgements

We thank P. Aggarwal, B. Augenbraun, L. Liu and A. M. Rey for comments and suggestions on the paper. T.L. acknowledges support from Carl Zeiss Foundation, the RiSC programme of the Ministry of Science, Research and Arts Baden-Württemberg, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 949431). G.V. acknowledges support from the Alexander von Humboldt Foundation and the European Union (ERC, LIRICO 101115996). D.W. is supported by Hong Kong RGC General Research Fund (grants no. 14301818 and no. 14301119) and Collaborative Research Fund (grant no. C6009-20GF). J.Y. acknowledges support from ARO and AFOSR MRUI, and NIST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langen, T., Valtolina, G., Wang, D. et al. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. 20, 702–712 (2024). https://doi.org/10.1038/s41567-024-02423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02423-1

  • Springer Nature Limited

This article is cited by

Navigation