Skip to main content
Log in

Polymer nanocomposite dielectrics for capacitive energy storage

  • Review Article
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Application and investigation prospects of polymer dielectrics.
Fig. 2: Key characteristics to achieve high energy density in polymer dielectrics.
Fig. 3: Dipole activity.
Fig. 4: Breakdown resistance.
Fig. 5: Heat tolerance.
Fig. 6: Interface phenomena.
Fig. 7: Comparison and interrelationships between key characteristics of energy storage performance in polymer nanocomposite dielectrics.

Similar content being viewed by others

References

  1. Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).

    Article  CAS  Google Scholar 

  2. Yang, M., Ren, W., Guo, M. & Shen, Y. High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review. Small 18, 2205247 (2022).

    Article  CAS  Google Scholar 

  3. Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 1808567 (2020).

    Article  CAS  Google Scholar 

  4. McNab, I. R. Large-scale pulsed power opportunities and challenges. IEEE Trans. Plasma Sci. 42, 1118–1127 (2014).

    Article  Google Scholar 

  5. Chen, Q., Shen, Y., Zhang, S. & Zhang, Q. M. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015).

    Article  CAS  Google Scholar 

  6. Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article  CAS  Google Scholar 

  7. Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci. 15, 56–81 (2021).

    Article  Google Scholar 

  8. Feng, Q. et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022).

    Article  CAS  Google Scholar 

  9. Yang, Y., Dang, Z., Li, Q. & He, J. Self-healing of electrical damage in polymers. Adv. Sci. 7, 2002131 (2020).

    Article  CAS  Google Scholar 

  10. Pei, J.-Y., Yin, L.-J., Zhong, S.-L. & Dang, Z.-M. Suppressing the loss of polymer-based dielectrics for high power energy storage. Adv. Mater. 35, 2203623 (2023).

    Article  CAS  Google Scholar 

  11. Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article  CAS  Google Scholar 

  12. Tan, D., Zhang, L., Chen, Q. & Irwin, P. High-temperature capacitor polymer films. J. Electron. Mater. 43, 4569–4575 (2014).

    Article  CAS  Google Scholar 

  13. Popielarz, R. & Chiang, C. K. Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Mater. Sci. Eng. B 139, 48–54 (2007).

    Article  CAS  Google Scholar 

  14. Sun, Y., Zhang, Z. & Wong, C. P. Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46, 2297–2305 (2005).

    Article  CAS  Google Scholar 

  15. Mackey, M. et al. Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion. J. Phys. D 42, 175304 (2009).

    Article  Google Scholar 

  16. Manoharan, M. P., Lanagan, M. T., Zhou, C., Kushner, D. & Zhang, S. H. Enhancement of dielectric breakdown strength in glass using polymer coatings. In IEEE International Power Modulator and High Voltage Conference 280–283 (IEEE, 2012).

  17. Dang, Z. M., Yuan, J. K., Yao, S. H. & Liao, R. J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013).

    Article  CAS  Google Scholar 

  18. Luo, H. et al. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48, 4424–4465 (2019).

    Article  CAS  Google Scholar 

  19. Yang, M. et al. Surface engineering of 2D dielectric polymer films for scalable production of high-energy-density films. Prog. Mater. Sci. 128, 100968 (2022).

    Article  Google Scholar 

  20. Zhu, L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687 (2014).

    Article  CAS  Google Scholar 

  21. Rabe, K. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics (Springer, 2007).

  22. Yuan, X., Matsuyama, Y. & Chung, T. C. M. Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 43, 4011–4015 (2010).

    Article  CAS  Google Scholar 

  23. Wei, J. et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties. J. Appl. Polym. Sci. 135, 46837 (2018).

    Article  Google Scholar 

  24. Treufeld, I., Wang, D. H., Kurish, B. A., Tan, L.-S. & Zhu, L. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain. J. Mater. Chem. A 2, 20683–20696 (2014).

    Article  CAS  Google Scholar 

  25. Ren, W. et al. High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles. Chem. Eng. J. 420, 127614 (2020).

    Article  Google Scholar 

  26. Zhu, Y. F., Zhang, Z. B., Litt, M. H. & Zhu, L. High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization. Macromolecules 51, 6257–6266 (2018).

    Article  CAS  Google Scholar 

  27. Wu, S. et al. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 25, 1734–1738 (2013).

    Article  CAS  Google Scholar 

  28. Zhang, M. et al. Polymer dielectrics with simultaneous ultrahigh energy density and low loss. Adv. Mater. 33, 2008198 (2021).

    Article  CAS  Google Scholar 

  29. Zhang, Z., Wang, D. H., Litt, M. H., Tan, L. & Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018).

    Article  CAS  Google Scholar 

  30. Wei, J. & Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020).

    Article  CAS  Google Scholar 

  31. Prateek, Thakur, V. K. & Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016).

    Article  CAS  Google Scholar 

  32. Sun, W. et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 121, 244101 (2017).

    Article  Google Scholar 

  33. Qi, L., Lee, B., Chen, S. H., Samuels, W. D. & Exarhos, G. High‐dielectric‐constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005).

    Article  CAS  Google Scholar 

  34. Wang, L. & Dang, Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl. Phys. Lett. 87, 042903 (2005).

    Article  Google Scholar 

  35. Xia, F. et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574–1577 (2002).

    Article  CAS  Google Scholar 

  36. Chung, T. & Petchsuk, A. Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromolecules 35, 7678–7684 (2002).

    Article  CAS  Google Scholar 

  37. Zhang, Q., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article  CAS  Google Scholar 

  38. Bharti, V. et al. Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Mater. Res. Innov. 2, 57–63 (1998).

    Article  CAS  Google Scholar 

  39. Mabboux, P.-Y. & Gleason, K. K. 19F NMR characterization of electron beam irradiated vinylidene fluoride–trifluoroethylene copolymers. J. Fluor. Chem. 113, 27–35 (2002).

    Article  CAS  Google Scholar 

  40. Wang, L., Zhao, X. & Feng, J. Effects of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) copolymers studied by solid-state nuclear magnetic resonance spectroscopy. J. Polym. Sci. B 44, 1714–1724 (2006).

    Article  CAS  Google Scholar 

  41. Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).

    Article  CAS  Google Scholar 

  42. Liu, Y. et al. Relaxor ferroelectric polymers: insight into high electrical energy storage properties from a molecular perspective. Small Sci. 1, 2000061 (2021).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96–100 (2018).

    Article  CAS  Google Scholar 

  44. Jiang, J. et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater. 18, 213–221 (2019).

    Article  Google Scholar 

  45. Li, Q. et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015).

    Article  CAS  Google Scholar 

  46. Tang, H., Lin, Y. & Sodano, H. A. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv. Energy Mater. 3, 451–456 (2013).

    Article  CAS  Google Scholar 

  47. Zhang, Y. et al. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019).

    CAS  Google Scholar 

  48. Zhang, Z. et al. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592–597 (2020).

    Article  CAS  Google Scholar 

  49. Thakur, Y. et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy 32, 73–79 (2017).

    CAS  Google Scholar 

  50. Zhang, Q., Chen, X., Zhang, T. & Zhang, Q. M. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds. Nano Energy 64, 103916 (2019).

    CAS  Google Scholar 

  51. Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers (Institution of Engineering and Technology, 1992).

  52. Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).

    Article  CAS  Google Scholar 

  53. Shimizu, N., Katsukawa, H., Miyauchi, M., Kosaki, M. & Horii, K. The space charge behavior and luminescence phenomena in polymers at 77 K. IEEE Trans. Electr. Insul. 14, 256–263 (1979).

    Article  Google Scholar 

  54. Kofod, G., Sommer-Larsen, P., Kronbluh, R. & Pelrine, R. Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).

    Article  CAS  Google Scholar 

  55. Densley, J., Kalicki, T. & Nadolny, Z. Characteristics of PD pulses in electrical trees and interfaces in extruded cables. IEEE Trans. Dielectr. Electr. Insul. 8, 48–57 (2001).

    Article  Google Scholar 

  56. Ray, S. An Introduction to High Voltage Engineering (PHI Learning, 2013).

  57. Pei, J. et al. All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021).

    Article  CAS  Google Scholar 

  58. Seitz, F. On the theory of electron multiplication in crystals. Phys. Rev. 76, 1376–1393 (1949).

    Article  Google Scholar 

  59. Frohlich, H. On the theory of dielectric breakdown in solids. Proc. R. Soc. Lond. 188, 521–532 (1947).

    CAS  Google Scholar 

  60. Chiu, F. C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014).

    Article  Google Scholar 

  61. Zhang, X. et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30, 1707269 (2018).

    Article  Google Scholar 

  62. Jiang, J. et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9, 1803411 (2019).

    Article  Google Scholar 

  63. Bao, Z. W. et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv. Mater. 32, 1907227 (2020).

    Article  CAS  Google Scholar 

  64. Sun, B. et al. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 18, 2202421 (2022).

    Article  CAS  Google Scholar 

  65. Li, H. et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019).

    Article  Google Scholar 

  66. Li, Q., Han, K., Gadinski, M. R., Zhang, G. & Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244–6249 (2014).

    Article  CAS  Google Scholar 

  67. Shen, Z. et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018).

    Article  Google Scholar 

  68. Li, H. et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. Infomat 2, 389–400 (2020).

    Article  CAS  Google Scholar 

  69. Wang, P. et al. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 32, 2204155 (2022).

    Article  CAS  Google Scholar 

  70. Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article  CAS  Google Scholar 

  71. Luo, S. et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 9, 1803204 (2019).

    Article  Google Scholar 

  72. Luo, B. et al. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv. Funct. Mater. 31, 2007994 (2021).

    Article  CAS  Google Scholar 

  73. Wang, P. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33, 2103338 (2021).

    Article  CAS  Google Scholar 

  74. Hu, P. et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24, 3172–3178 (2014).

    Article  CAS  Google Scholar 

  75. Shen, Y. et al. Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Energy 18, 176–186 (2015).

    CAS  Google Scholar 

  76. Wang, Y., Li, Z., Wu, C. & Cao, Y. High-temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chem. Eng. J. 401, 126093 (2020).

    Article  CAS  Google Scholar 

  77. Zhu, Y. et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019).

    Article  Google Scholar 

  78. Bai, H. R., Zhu, K., Wang, Z., Shen, B. & Zhai, J. W. 2D fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture. Adv. Funct. Mater. 31, 2102646 (2021).

    Article  CAS  Google Scholar 

  79. Wang, Y. et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater 24, 626 (2019).

    Article  Google Scholar 

  80. Wang, H. Q. et al. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 437, 135431 (2022).

    Article  CAS  Google Scholar 

  81. Li, J. et al. Constructing bidirectional-matched interface between polymer and 2D nanosheets for enhancing energy storage performance of the composites. Energy Storage Mater. 54, 605–614 (2022).

    Article  Google Scholar 

  82. Zhang, B. et al. Reviving the ‘Schottky’ barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33, 2101374 (2021).

    Article  CAS  Google Scholar 

  83. Wang, Y. et al. Interfacial 2D montmorillonite nanocoatings enable sandwiched polymer nanocomposites to exhibit ultrahigh capacitive energy storage performance at elevated temperatures. Adv. Sci. 9, 2204760 (2022).

    Article  CAS  Google Scholar 

  84. Nakamura, S. et al. Effects of filler-size on electrical treeing in epoxy/silica nanocomposites. In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena 184–187 (IEEE, 2020).

  85. Yue, D. et al. Prediction of energy storage performance in polymer composites using high-throughput stochastic breakdown simulation and machine learning. Adv. Sci. 9, 2105773 (2022).

    Article  CAS  Google Scholar 

  86. Ai, D. et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020).

    Article  CAS  Google Scholar 

  87. Jiang, Y. D. et al. Ultrahigh energy density in continuously gradient-structured all-organic dielectric polymer films. Adv. Funct. Mater. 32, 2200848 (2022).

    Article  CAS  Google Scholar 

  88. Li, H. et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023).

    Article  CAS  Google Scholar 

  89. Li, H. et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 13, 1279–1286 (2020).

    Article  CAS  Google Scholar 

  90. Khanchaitit, P., Han, K., Gadinski, M. R., Li, Q. & Wang, Q. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4, 2845 (2013).

    Article  Google Scholar 

  91. Pan, Z. et al. Tailoring poly(styrene‐co‐maleic anhydride) networks for all‐polymer dielectrics exhibiting ultrahigh energy density and charge–discharge efficiency at elevated temperatures. Adv. Mater. 35, 2207580 (2022).

    Article  Google Scholar 

  92. Chen, S. Y. et al. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 387, 123662 (2020).

    Article  CAS  Google Scholar 

  93. Zhang, Y. et al. Enhanced discharged efficiency and high energy density at elevated temperature in polymer dielectric via manipulating relaxation behavior. CCS Chem. 2, 1169–1177 (2020).

    Article  CAS  Google Scholar 

  94. Tang, Y. et al. Crosslinked dielectric materials for high-temperature capacitive energy storage. J. Mater. Chem. A 9, 10000–10011 (2021).

    Article  CAS  Google Scholar 

  95. Yang, M., Zhou, L., Li, X., Ren, W. & Shen, Y. Polyimides physical-crosslinked by aromatic molecules exhibt ultrahigh energy deneity at 200 °C. Adv. Mater. 35, e2302392 (2023).

    Article  Google Scholar 

  96. Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article  CAS  Google Scholar 

  97. Dong, J. et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    Article  CAS  Google Scholar 

  98. Bi, K. et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018).

    Article  CAS  Google Scholar 

  99. Zhou, Y. et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018).

    Article  Google Scholar 

  100. Dong, J. et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy 99, 107314 (2022).

    CAS  Google Scholar 

  101. Azizi, A. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017).

    Article  Google Scholar 

  102. Liu, G. et al. Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chem. Eng. J. 389, 124443 (2020).

    Article  CAS  Google Scholar 

  103. Liu, F. H. et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017).

    Article  Google Scholar 

  104. Cheng, S. et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445–453 (2021).

    Article  Google Scholar 

  105. Ren, L. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021).

    Article  CAS  Google Scholar 

  106. Pan, Z., Zhai, J. & Shen, B. Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5, 15217–15226 (2017).

    Article  CAS  Google Scholar 

  107. Liu, H. et al. Single-crystalline BaZr0.2Ti0.8O3 membranes enabled high energy density in PEI-based composites for high-temperature electrostatic capacitors. Adv. Mater. 35, 2300962 (2023).

    Article  CAS  Google Scholar 

  108. Ren, W. et al. Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage. Adv. Mater. 34, 2207421 (2022).

    Article  CAS  Google Scholar 

  109. Zhang, B. et al. Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater. 33, 2210050 (2023).

    Article  CAS  Google Scholar 

  110. Zhou, Y., Zhu, Y., Xu, W. & Wang, Q. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv. Energy Mater. 13, 2203961 (2023).

    Article  CAS  Google Scholar 

  111. Liao, R.-J., Zhou, T.-C., George, C. & Yang, L.-J. A space charge trapping model and its parameters in polymeric material. Acta Phys. Sin. 61, 017201 (2012).

    Article  Google Scholar 

  112. Sarjeant, W. J., Zirnheld, J. & MacDougall, F. W. Capacitors. IEEE Trans. Plasma Sci. 26, 1368–1392 (1998).

    Article  CAS  Google Scholar 

  113. Ho, J. S. & Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 10, 29189–29218 (2018).

    Article  CAS  Google Scholar 

  114. Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem. Rev. 109, 6632–6686 (2009).

    Article  CAS  Google Scholar 

  115. Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article  CAS  Google Scholar 

  116. Wu, C. et al. Flexible cyclic-olefin with enhanced dipolar relaxation for harsh condition electrification. Proc. Natl Acad. Sci. USA 118, e2115367118 (2021).

    Article  CAS  Google Scholar 

  117. Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article  CAS  Google Scholar 

  118. Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article  CAS  Google Scholar 

  119. Dong, J. et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 35, 2211487 (2023).

    Article  CAS  Google Scholar 

  120. Dai, Z. et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv. Mater. 34, 2101976 (2021).

    Article  Google Scholar 

  121. Wu, C. et al. Rational design of all-organic flexible high-temperature polymer dielectrics. Matter 5, 2615–2623 (2022).

    Article  CAS  Google Scholar 

  122. Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  CAS  Google Scholar 

  123. Zhang, Q. et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 4, 2448–2459 (2021).

    Article  CAS  Google Scholar 

  124. Liu, K. et al. Realizing enhanced energy density in ternary polymer blends by intermolecular structure design. Chem. Eng. J. 446, 136980 (2022).

    Article  Google Scholar 

  125. Chen, Z. et al. Ultrahigh energy-density flexible dielectric films achieved by self-bundled polymer nanocluster in necklace-like arrangement. Energy Storage Mater. 33, 1–10 (2020).

    Article  Google Scholar 

  126. Huang, X. Y. et al. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R 142, 100577 (2020).

    Article  Google Scholar 

  127. Kumanek, B. & Janas, D. Thermal conductivity of carbon nanotube networks: a review. J. Mater. Sci. 54, 7397–7427 (2019).

    Article  CAS  Google Scholar 

  128. Xiao, M. & Du, B. X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High. Volt. 1, 34–42 (2016).

    Article  Google Scholar 

  129. Huang, X., Jiang, P. & Tanaka, T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27, 8–16 (2011).

    Article  Google Scholar 

  130. Shen, Z. et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy Mater. 8, 1800509 (2018).

    Article  Google Scholar 

  131. Wang, S. et al. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano 16, 13612–13656 (2022).

    CAS  Google Scholar 

  132. Lewis, T. J. Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1, 812–825 (1994).

    Article  CAS  Google Scholar 

  133. Lewis, T. J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004).

    Article  CAS  Google Scholar 

  134. Tanaka, T., Kozako, M., Fuse, N. & Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005).

    Article  CAS  Google Scholar 

  135. Baer, E. & Zhu, L. 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50, 2239–2256 (2017).

    Article  CAS  Google Scholar 

  136. Niu, Y. et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy 97, 107215 (2022).

    Article  CAS  Google Scholar 

  137. Roscow, J. I., Bowen, C. R. & Almond, D. P. Breakdown in the case for materials with giant permittivity? ACS Energy Lett. 2, 2264–2269 (2017).

    Article  CAS  Google Scholar 

  138. Bai, H. R. et al. Interfacial polarization regulation of ultrathin 2D nanosheets inducing high energy storage density of polymer-based nanocomposite with opposite gradient architecture. Energy Storage Mater. 46, 503–511 (2022).

    Article  Google Scholar 

  139. Zhang, X. et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819–824 (2015).

    Article  CAS  Google Scholar 

  140. Zhang, X. et al. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28, 2055–2061 (2016).

    Article  CAS  Google Scholar 

  141. Sun, L. et al. Asymmetric trilayer all‐polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting for advanced energy storage capacitors. Adv. Funct. Mater. 31, 2100280 (2021).

    Article  CAS  Google Scholar 

  142. Wang, Y. et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015).

    Article  CAS  Google Scholar 

  143. Peng, S. et al. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31, 1807722 (2019).

    Article  Google Scholar 

  144. Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article  CAS  Google Scholar 

  145. Chen, X. et al. Topological structure enhanced nanostructure of high temperature polymer exhibiting more than ten times enhancement of dipolar response. Nano Energy 88, 106225 (2021).

    Article  CAS  Google Scholar 

  146. Li, L. et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 33, 2102392 (2021).

    Article  CAS  Google Scholar 

  147. Marwat, M. A. et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3. Energy Storage Mater. 31, 492–504 (2020).

    Article  Google Scholar 

  148. Zhou, Y. et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 28, 255–263 (2020).

    Article  Google Scholar 

  149. Huang, C. et al. Double enhanced energy storage density via polarization gradient design in ferroelectric poly(vinylidene fluoride)-based nanocomposites. Chem. Eng. J. 411, 128585 (2021).

    Article  CAS  Google Scholar 

  150. Zheng, M. S. et al. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48, 144–151 (2018).

    Article  CAS  Google Scholar 

  151. Chen, S. N. et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers. Chem. Eng. J. 401, 126095 (2020).

    Article  CAS  Google Scholar 

  152. Liu, B. et al. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Mater. 27, 443–452 (2020).

    Article  Google Scholar 

  153. Chen, J. et al. Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67, 609–618 (2021).

    Article  Google Scholar 

  154. Huang, Y., Huang, X., Schadler, L. S., He, J. & Jiang, P. Core@ double-shell structured nanocomposites: a route to high dielectric constant and low loss material. ACS Appl. Mater. Interfaces 8, 25496–25507 (2016).

    Article  CAS  Google Scholar 

  155. Xu, W. et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, 1901582 (2019).

    Article  Google Scholar 

  156. Liu, J. et al. Optimizing electric field distribution via tuning cross-linked point size for improving the dielectric properties of polymer nanocomposites. Nanoscale 12, 12416–12425 (2020).

    Article  CAS  Google Scholar 

  157. Guo, M. et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today 29, 49–67 (2019).

    Article  CAS  Google Scholar 

  158. Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).

    Article  CAS  Google Scholar 

  159. Yang, M. et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).

    Article  CAS  Google Scholar 

  160. Shen, Z.-H. et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1843 (2019).

    Article  Google Scholar 

  161. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Article  Google Scholar 

  162. Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Article  Google Scholar 

  163. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  164. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  Google Scholar 

  165. Yang, J. et al. Spontaneous electric-polarization topology in confined ferroelectric nematics. Nat. Commun. 13, 7806 (2022).

    Article  CAS  Google Scholar 

  166. Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).

    Article  CAS  Google Scholar 

  167. Guo, M. et al. A pyrotoroidic transition in ferroelectric polymer. Matter 5, 3041–3052 (2022).

    Article  CAS  Google Scholar 

  168. Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  CAS  Google Scholar 

  169. Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article  Google Scholar 

  170. Aramberri, H., Fedorova, N. S. & Íñiguez, J. Ferroelectric/paraelectric superlattices for energy storage. Sci. Adv. 8, eabn4880 (2022).

    Article  CAS  Google Scholar 

  171. Liu, Y. et al. Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 34, 2108772 (2022).

    Article  CAS  Google Scholar 

  172. Ni, B., Shi, Y. & Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 30, 1802031 (2018).

    Article  Google Scholar 

  173. Liu, Q. & Wang, X. Polyoxometalate clusters: sub-nanometer building blocks for construction of advanced materials. Matter 2, 816–841 (2020).

    Article  Google Scholar 

  174. Zhang, S., Shi, W. & Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).

    Article  CAS  Google Scholar 

  175. Lu, Q. C. & Wang, X. Recent progress of sub-nanometric materials in photothermal energy conversion. Adv. Sci. 9, 2104225 (2022).

    Article  CAS  Google Scholar 

  176. Yang, M. et al. Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures. Adv. Funct. Mater. 33, 2214100 (2023).

    Article  CAS  Google Scholar 

  177. Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2022).

    Article  Google Scholar 

  178. Zhang, Y. et al. Self-healing of materials under high electrical stress. Matter 3, 989–1008 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant numbers 52388201 and 52027817), and China Postdoctoral Science Foundation (grant number 2022T150343)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shujun Zhang, Ce-Wen Nan or Yang Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Chris Bowen, Xingyi Huang and Amit Kumar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Guo, M., Xu, E. et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-023-01541-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-023-01541-w

  • Springer Nature Limited

Navigation