Skip to main content

Polymer Nanocomposites for Power Energy Storage

  • Chapter
  • First Online:
Polymer Nanocomposites
  • 2762 Accesses

Abstract

Dielectric capacitors are ubiquitous in electronics and electric power systems as basic electrical component for power energy storage, in which the energy stored is limited by the dielectric constant and electric breakdown strength of the dielectric material employed. Realization of high-energy-density in capacitors hence relies on the development of advanced dielectric materials. Inorganic dielectric materials, while enjoying high dielectric constant, suffer from low breakdown strength. On the other hand, polymer dielectrics possess excellent processability, high breakdown strength, and graceful failure mechanism but have dielectric constant that are orders of magnitude smaller than those of their inorganic counterparts. Recent advancements in the research area of dielectric materials are represented by integration of the complementary advantages of inorganic and organic dielectric materials which creates the polymer nanocomposite dielectrics. In this chapter we summarize the recent progress in polymer nanocomposites for dielectric power energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pikul JH, Zhang HG, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732

    Article  CAS  Google Scholar 

  2. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  3. Wu ZS, Parves K, Feng XL, Müllen K (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4:2487

    Google Scholar 

  4. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  5. Dang ZM, Wu JB, Fan LZ, Nan CW (2003) Dielectric behavior of Li and Ti co-doped NiO/PVDF composites. Chem Phys Lett 376:389–394

    Article  CAS  Google Scholar 

  6. Subodh G, Deepu V, Mohanan P, Sebastian MT (2009) Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Appl Phys Lett 95:062903

    Article  CAS  Google Scholar 

  7. Zhou X, Zhao XH, Suo ZG, Zou C, Runt J, Liu S, Zhang SH, Zhang QM (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett 94:162901

    Article  CAS  Google Scholar 

  8. Parvatikar N, Ambika Prasad MVN (2006) Frequency-dependent conductivity and dielectric permittivity of polyaniline/CeO2 composites. J Appl Polym Sci 100:1403–1405

    Article  CAS  Google Scholar 

  9. Afzal AB, Akhtar MJ, Nadeem M, Hassan MM (2009) Investigation of structural and electrical properties of polyaniline/gold nanocomposites. J Phys Chem C 113:17560–17565

    Article  CAS  Google Scholar 

  10. Schroeder R, Majewski LA, Grell M (2005) High-performance organic transistors using solution-processed nanoparticle-filled high-k polymer gate insulators. Adv Mater 17:1535–1539

    Article  CAS  Google Scholar 

  11. Ginzburg VV, Myers K, Malowinski S, Cieslinski R, Elwell M, Bernius M (2006) High-dielectric-constant self-assembled nodular structures in polymer/gold nanoparticle films. Macromolecules 39:3901–3906

    Article  CAS  Google Scholar 

  12. Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide−polyolefin nanocomposites: experiment and theory. Chem Mater 22:1567–1578

    Article  CAS  Google Scholar 

  13. Love GR (1990) Energy storage in ceramic dielectric. J Am Ceram Soc 73:323–328

    Article  CAS  Google Scholar 

  14. Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electric power industry. IEEE Trans Dielectr Electr Insul 11:797–807

    Article  Google Scholar 

  15. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30:1939–1942

    Article  CAS  Google Scholar 

  16. Chu BJ, Zhou X, Ren KL, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    Article  CAS  Google Scholar 

  17. Ho J, Jow TR (2012) High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans Dielectr Electr Insul 19:990–995

    Article  CAS  Google Scholar 

  18. Levy O, Stroud D (1997) Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys Rev B 56:8035

    Article  CAS  Google Scholar 

  19. Nan CW, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131

    Article  CAS  Google Scholar 

  20. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci B Polym Phys 49:1421–1429

    Article  CAS  Google Scholar 

  21. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  Google Scholar 

  22. Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21:217

    Article  CAS  Google Scholar 

  23. Li J, Claude J, Norena-Franco LE, Il Seok S, Wang Q (2008) Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem Mater 20:6304

    Article  CAS  Google Scholar 

  24. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581

    Article  CAS  Google Scholar 

  25. Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005

    Article  CAS  Google Scholar 

  26. Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, Marks TJ (2010) In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 22:5154

    Article  CAS  Google Scholar 

  27. Li J, Khanchaitit P, Han K, Wang Q (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22:5350

    Article  CAS  Google Scholar 

  28. Deng Y, Zhang Y, Xiang Y, Wang G, Xu H (2009) Bi2S3–BaTiO3/PVDF three-phase composites with high dielectric permittivity. J Mater Chem 19:2058

    Article  CAS  Google Scholar 

  29. Huang X, Xie L, Jiang P, Wang G, Liu F (2009) Electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate elastomer composites with surface modified BaTiO3 nanoparticles. J Phys D Appl Phys 42:245407

    Article  CAS  Google Scholar 

  30. Jung HM, Kang JH, Yang SY, Won JC, Kim YS (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22:450

    Article  CAS  Google Scholar 

  31. Dang ZM, Wang HY, Xu HP (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 89:112902

    Article  CAS  Google Scholar 

  32. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan CW (2012) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22:8063

    Article  CAS  Google Scholar 

  33. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan CW (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491

    Article  CAS  Google Scholar 

  34. Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC (2008) Electrical properties of percolative polystyrene/carbon nanofiber composites. IEEE Trans Dielectr Electr Insul 15:236

    Article  CAS  Google Scholar 

  35. Dou XL, Liu XL, Zhang Y, Feng H, Chen JF, Du S (2009) Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite. Appl Phys Lett 95:132904

    Article  CAS  Google Scholar 

  36. Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai J (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077

    Article  CAS  Google Scholar 

  37. Yang W, Yu S, Sun R, Du R (2011) Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater 59:5593

    Article  CAS  Google Scholar 

  38. Prakash BS, Varma KBR (2007) Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos Sci Technol 67:2363

    Article  CAS  Google Scholar 

  39. Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Barros-Timmons A (2008) Dielectric properties of polystyrene–CCTO composite. J Non Cryst Solids 354:5321

    Article  CAS  Google Scholar 

  40. Tang HX, Lin YR, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22:015702

    Article  CAS  Google Scholar 

  41. Yao J, Xiong C, Dong L, Chen C, Lei Y, Chen L, Li R, Zhu Q, Liu X (2009) Enhancement of dielectric constant and piezoelectric coefficient of ceramic–polymer composites by interface chelation. J Mater Chem 19:2817

    Article  CAS  Google Scholar 

  42. Banerjee S, Cook-Chennault KA (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133:041016

    Article  CAS  Google Scholar 

  43. Tang H, Lin Y, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469

    Article  CAS  Google Scholar 

  44. Yu K, Wang H, Zhou Y, Bai Y, Niu Y (2013) Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys 113:034105

    Article  CAS  Google Scholar 

  45. Tomer V, Polizos G, Manias E, Randall CA (2010) Epoxy-based nanocomposites for electrical energy storage. I: effects of montmorillonite and barium titanate nanofillers. J Appl Phys 108:074116

    Article  CAS  Google Scholar 

  46. Xia WM, Xu Z, Wen F, Zhang ZC (2012) Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 38:1071–1075

    Article  CAS  Google Scholar 

  47. Ducharme S (2009) An inside-out approach to storing electrostatic energy. ACS Nano 3:2447

    Article  CAS  Google Scholar 

  48. Guo N, DiBenedetto SA, Kwon DK, Wang L, Russell MT, Lanagan MT, Facchetti A, Marks TJ (2007) Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites. J Am Chem Soc 129:766

    Article  CAS  Google Scholar 

  49. Xie L, Huang X, Wu C, Jiang P (2011) Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21:5897

    Article  CAS  Google Scholar 

  50. Paniagua SA, Kim YS, Henry K, Kumar R, Perry JW, Marder SR (2014) Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 6:3477

    Article  CAS  Google Scholar 

  51. Yang K, Huang XY, Xie LY, Wu C, Jiang PK, Tanaka T (2012) Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol Rapid Comm 33:1921

    Article  CAS  Google Scholar 

  52. Xie LY, Huang XY, Yang K, Li ST, Jiang PK (2014) “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2:5244–5251

    Article  CAS  Google Scholar 

  53. Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater 22:1749

    Article  CAS  Google Scholar 

  54. Maliakal A, Katz H, Cotts P, Subramoney S, Mirau P (2005) Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J Am Chem Soc 127:14655

    Article  CAS  Google Scholar 

  55. Tang HX, Lin YR, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3:451–456

    Article  CAS  Google Scholar 

  56. Tang HX, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3nanowires. Nano Lett 13:1373–1379

    CAS  Google Scholar 

  57. Tang HX, Sodano HA (2013) High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl Phys Lett 102:063901

    Article  CAS  Google Scholar 

  58. Zhou Z, Tang HX, Lin YR, Sodano HA (2013) Hydrothermal growth of textured BaxSr1-xTiO3 films composed of nanowires. Nanoscale 5:10901–10907

    Article  CAS  Google Scholar 

  59. Zou C, Kushner D, Zhang S (2011) Wide temperature polyimide/ZrO2 polyimide/ZrO2 nanodielectric capacitor film with excellent electrical performance. Appl Phys Lett 98:082905

    Article  CAS  Google Scholar 

  60. Balasubramanian B, Kraemer KL, Reding NA, Skomski R, Ducharme S, Sellmyer DJ (2010) Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4:1893

    Article  CAS  Google Scholar 

  61. Lin S, Kuang X, Wang F, Zhu H (2012) Effect of TiO2 crystalline composition on the dielectric properties of TiO2/P(VDF-TrFE) composites. Phys Status Solidi RRL 6:352

    Article  CAS  Google Scholar 

  62. Ouyang G, Wang K, Chen XY (2012) TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant. J Micromech Microeng 22:074002

    Article  CAS  Google Scholar 

  63. Dang ZM, Xia YJ, Zha JW, Yuan JK, Bai J (2011) Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites. Mater Lett 65:3430

    Article  CAS  Google Scholar 

  64. Zha JW, Dang ZM, Zhou T, Song HT, Chen G (2010) Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process. Synth Met 160:2670

    Article  CAS  Google Scholar 

  65. Zha JW, Fan BH, Dang ZM, Li ST, Chen G (2010) Microstructure and electrical properties in three-component (Al2O3–TiO2)/polyimide nanocomposite films. J Mater Res 25:2384

    Article  CAS  Google Scholar 

  66. McCarthy DN, Stoyanov H, Rychkov D, Ragusch H, Melzer M, Kofod G (2012) Increased permittivity nanocomposite dielectrics by controlled interfacial interactions. Compos Sci Technol 72:731

    Article  CAS  Google Scholar 

  67. Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1

    Article  CAS  Google Scholar 

  68. Huang XY, Jiang PK, Kim CU (2007) Electrical properties of polyethylene/aluminum nanocomposites. J Appl Phys 102:124103

    Article  CAS  Google Scholar 

  69. Panda M, Srinivas V, Thakur AK (2011) Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites. Appl Phys Lett 99:042905

    Article  CAS  Google Scholar 

  70. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625

    Article  CAS  Google Scholar 

  71. Panda M, Srinivas V, Thakur AK (2008) On the question of percolation threshold in polyvinylidene fluoride/nanocrystalline nickel composites. Appl Phys Lett 92:132905

    Article  CAS  Google Scholar 

  72. Huang XY, Jiang PK, Xie LY (2009) Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl Phys Lett 95:242901

    Article  CAS  Google Scholar 

  73. Panda M, Srinivas V, Thakur AK (2008) Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites. Appl Phys Lett 93:242908

    Article  CAS  Google Scholar 

  74. Kofod G, Risse S, Stoyanov H, McCarthy DN, Sokolov S, Kraehnert R (2011) Broad-spectrum enhancement of polymer composite dielectric constant at ultralow volume fractions of silica-supported copper nanoparticles. ACS Nano 5:1623

    Article  CAS  Google Scholar 

  75. Shen Y, Lin YH, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19:1418–1422

    Article  CAS  Google Scholar 

  76. Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ (2013) Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct Mater 23:3560–3569

    Article  CAS  Google Scholar 

  77. Yao SH, Dang ZM, Jiang MJ, Xu HP, Bai JB (2007) Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Appl Phys Lett 91:212901

    Article  CAS  Google Scholar 

  78. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852

    Article  CAS  Google Scholar 

  79. Wang L, Dang ZM (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903

    Article  CAS  Google Scholar 

  80. Li Q, Xue QZ, Hao LZ, Gao XL, Zheng QB (2008) Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 68:2290

    Article  CAS  Google Scholar 

  81. Yao SH, Dang ZM, Xu HP, Jiang MJ, Bai J (2008) Exploration of dielectric constant dependence on evolution of microstructure in nanotube/ferroelectric polymer nanocomposites. Appl Phys Lett 92:082902

    Article  CAS  Google Scholar 

  82. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50:689

    Article  CAS  Google Scholar 

  83. Simoes R, Silva J, Vaia R, Sencadas V, Costa P, Gomes J, Lanceros-Mendez S (2009) Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology 20:035703

    Article  CAS  Google Scholar 

  84. Yuan JK, Yao SH, Sylvestre A, Bai J (2012) Biphasic polymer blends containing carbon nanotubes: heterogeneous nanotube distribution and its influence on the dielectric properties. J Phys Chem C 116:2051

    Article  CAS  Google Scholar 

  85. Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115:5515

    Article  CAS  Google Scholar 

  86. Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J (2011) High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl Phys Lett 98:032901

    Article  CAS  Google Scholar 

  87. Zhang S, Wang H, Wang G, Jiang Z (2012) Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix. Appl Phys Lett 101:012904

    Article  CAS  Google Scholar 

  88. Wu C, Huang X, Wu X, Yu J, Xie L, Jiang P (2012) TiO2-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos Sci Technol 72:521

    Article  CAS  Google Scholar 

  89. Sun LL, Li B, Zhao Y, Mitchell G, Zhong WH (2010) Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology 21:305702

    Article  CAS  Google Scholar 

  90. Sun LL, Zhao Y, Zhong WH (2011) Dependence of dielectric properties and percolative behavior on phase separation structure induced by heterogeneous carbon nanofiber distribution in polymer blend nanocomposites. Macromol Mater Eng 296:992

    Article  CAS  Google Scholar 

  91. Barick AK, Tripathy DK (2012) Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites. J Appl Polym Sci 124:765

    Article  CAS  Google Scholar 

  92. Sun LL, Zhang ZG, Zhong WH (2011) Fluorination deposition on carbon nanofibers by PTFE decomposition as a facile method to enhance dispersion and interaction in PVDF composites. J Mater Chem 21:944

    Article  CAS  Google Scholar 

  93. He F, Lau S, Chan HL, Fan JT (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710

    Article  CAS  Google Scholar 

  94. Yu J, Huang X, Wu C, Jiang P (2011) Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Trans Dielectr Electr Insul 18:478

    Article  CAS  Google Scholar 

  95. Han K, Li Q, Chen ZY, Gadinski MR, Dong LJ, Xiong CX, Wang Q (2013) Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer–graphene percolative composites. J Mater Chem C 1:7034–7042

    Article  CAS  Google Scholar 

  96. Fan P, Wang L, Yang J, Chen F, Zhong M (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23:365702

    Article  CAS  Google Scholar 

  97. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22:7010

    Article  CAS  Google Scholar 

  98. Wang DR, Bao YR, Zha JW, Zhao J, Dang ZM, Hu GH (2012) Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces 4:6273–6279

    Article  CAS  Google Scholar 

  99. Roy M, Nelson JK, McCrone RK, Schadler LS, Reed CW, Keefe R, Zeneger W (2005) Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–643

    Article  CAS  Google Scholar 

  100. Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K (2010) Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite. IEEE Trans Dielectr Electr Insul 17:1259–1267

    Article  CAS  Google Scholar 

  101. Tomer V, Manias E, Randall CA (2011) High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). J Appl Phys 110:044107

    Article  CAS  Google Scholar 

  102. Tomer V, Polizos G, Randall CA, Manias E (2011) Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109:074113

    Article  CAS  Google Scholar 

  103. Fillery SP, Koerner H, Drummy L, Dunkerley E, Durstock MF, Schmidt DF, Vaia RA (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 4:1388–1396

    Article  CAS  Google Scholar 

  104. Hu PH, Shen Y, Guan YH, Zhang XH, Lin YH, Zhang QM, Nan CW (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater 24:3172–3178

    Article  CAS  Google Scholar 

  105. Zhang X, Shen Y, Zhang QH, Gu L, Hu YH, Du JW, Lin YH, Nan CW (2015) Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater 27:819–824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Q., Wang, Q. (2016). Polymer Nanocomposites for Power Energy Storage. In: Huang, X., Zhi, C. (eds) Polymer Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-28238-1_6

Download citation

Publish with us

Policies and ethics