Skip to main content

Advertisement

Log in

Physical activation of innate immunity by spiky particles

  • Article
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

Microbial biochemicals have been indicated as the primary stimulators of innate immunity, the first line of the body’s defence against infections. However, the influence of topological features on a microbe’s surface on immune responses remains largely unknown. Here we demonstrate the ability of TiO2 microparticles decorated with nanospikes (spiky particles) to activate and amplify the immune response in vitro and in vivo. The nanospikes exert mechanical stress on the cells, which results in potassium efflux and inflammasome activation in macrophages and dendritic cells during phagocytosis. The spiky particles augment antigen-specific humoral and cellular immune responses in the presence of monophosphoryl lipid A and elicit protective immunity against tumour growth and influenza viral infection. The study offers insights into how surface physical cues can tune the activation of innate immunity and provides a basis for engineering particles with increased immunogenicity and adjuvanticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic and particle fabrication.
Fig. 2: BMM viability and cell–particle interface study.
Fig. 3: BMM–particle interface study via confocal fluorescence microscopy.
Fig. 4: Spiky particles activate inflammasomes.
Fig. 5: Spiky particles enhance DC maturation and DC-meditated cancer immunotherapy.
Fig. 6: Spiky particles coupled with MPL as a potent adjuvant.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  Google Scholar 

  2. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  Google Scholar 

  3. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  4. Petrovsky, N. & Aguilar, J. C. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82, 488–496 (2004).

    Article  CAS  Google Scholar 

  5. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    Article  CAS  Google Scholar 

  6. Kline, K. A., Falker, S., Dahlberg, S., Normark, S. & Henriques-Normark, B. Bacterial adhesins in host–microbe interactions. Cell Host Microbe 5, 580–592 (2009).

    Article  CAS  Google Scholar 

  7. Harris, A. K. et al. Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies. Proc. Natl Acad. Sci. USA 110, 4592–4597 (2013).

    Article  CAS  Google Scholar 

  8. van Duin, D., Cleare, W., Zaragoza, O., Casadevall, A. & Nosanchuk, J. D. Effects of voriconazole on Cryptococcus neoformans. Antimicrob. Agents Chemother. 48, 2014–2020 (2004).

    Article  Google Scholar 

  9. Waksman, G. & Hultgren, S. J. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat. Rev. Microbiol. 7, 765–774 (2009).

    Article  CAS  Google Scholar 

  10. Purcell, B. K., Pruckler, J. & Clegg, S. Nucleotide sequences of the genes encoding type 1 fimbrial subunits of Klebsiella pneumoniae and Salmonella typhimurium. J. Bacteriol. 169, 5831–5834 (1987).

    Article  CAS  Google Scholar 

  11. Padmanabhan, J. et al. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 8, 4366–4375 (2014).

    Article  CAS  Google Scholar 

  12. Luu, T. U., Gott, S. C., Woo, B. W. K., Rao, M. P. & Liu, W. F. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7, 28665–28672 (2015).

    Article  CAS  Google Scholar 

  13. Christo, S. N. et al. The role of surface nanotopography and chemistry on primary neutrophil and macrophage cellular responses. Adv. Healthcare Mater. 5, 956–965 (2016).

    Article  CAS  Google Scholar 

  14. Xie, X. & Melosh, N. A. Fabrication of sub-cell size ‘spiky’ nanoparticles and their interfaces with biological cells. J. Mater. Chem. B 3, 5155–5160 (2015).

    Article  CAS  Google Scholar 

  15. Li, J. et al. Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries. Chem. Commun. 48, 389–391 (2012).

    Article  CAS  Google Scholar 

  16. EFSA ANS panel. Scientific opinion on the re-evaluation of titanium dioxide (E171) as a food additive. EFSA J. 14, 4545 (2016).

    Google Scholar 

  17. Farrell, T. P. & Magnuson, B. Absorption, distribution and excretion of four forms of titanium dioxide pigment in the rat. J. Food. Sci. 82, 1985–1993 (2017).

    Article  CAS  Google Scholar 

  18. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS  Google Scholar 

  19. Neudecker, V. et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J. Exp. Med. 214, 1737–1752 (2017).

    Article  CAS  Google Scholar 

  20. Kalupahana, R. S., Mastroeni, P., Maskell, D. & Blacklaws, B. A. Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium. Immunology 115, 462–472 (2005).

    Article  CAS  Google Scholar 

  21. Shahid, M. et al. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity. Sci. Rep. 6, 24135 (2016).

    Article  CAS  Google Scholar 

  22. Jablonski, K. A. et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One 10, e0145342 (2015).

    Article  Google Scholar 

  23. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  Google Scholar 

  24. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  Google Scholar 

  25. Patino, T., Soriano, J., Barrios, L., Ibanez, E. & Nogues, C. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells. Sci. Rep. 5, 11371 (2015).

    Article  CAS  Google Scholar 

  26. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  27. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    Article  CAS  Google Scholar 

  28. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    Article  CAS  Google Scholar 

  29. Celada, A. & Maki, R. A. The expression of I-A correlates with the uptake of interferon-gamma by macrophages. Eur. J. Immunol. 19, 205–208 (1989).

    Article  CAS  Google Scholar 

  30. Galic, M. et al. External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14, 874–U212 (2012).

    Article  CAS  Google Scholar 

  31. Bavi, O. et al. Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6, 14 (2016).

    Article  Google Scholar 

  32. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article  CAS  Google Scholar 

  33. Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl Acad. Sci. USA 111, 3614–3619 (2014).

    Article  CAS  Google Scholar 

  34. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  Google Scholar 

  35. Fenix, A. M. et al. Expansion and concatenation of nonmuscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis. Mol. Biol. Cell 27, 1465–1478 (2016).

    Article  CAS  Google Scholar 

  36. Galic, M. et al. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. eLife 3, e03116 (2014).

    Article  Google Scholar 

  37. Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat Nanotech. 12, 750–756 (2017).

    Article  CAS  Google Scholar 

  38. Kool, M. et al. Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    Article  CAS  Google Scholar 

  39. Chen, X., Zeng, Q. & Wu, M. X. Improved efficacy of dendritic cell-based immunotherapy by cutaneous laser illumination. Clin. Cancer Res. 18, 2240–2249 (2012).

    Article  CAS  Google Scholar 

  40. Kurts, C., Robinson, B. W. S. & Knolle, P. A. Cross-priming in health and disease. Nat. Rev. Immunol. 10, 403–414 (2010).

    Article  CAS  Google Scholar 

  41. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  Google Scholar 

  42. Murugaiyan, G., Martin, S. & Saha, B. Levels of CD40 expression on dendritic cells dictate tumour growth or regression. Clin. Exp. Immunol. 149, 194–202 (2007).

    Article  CAS  Google Scholar 

  43. MacLeod, M. K. L. et al. Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc. Natl. Acad. Sci. USA 108, 7914–7919 (2011).

    Article  CAS  Google Scholar 

  44. Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).

    Article  CAS  Google Scholar 

  45. Wang, J., Shah, D., Chen, X., Anderson, R. R. & Wu, M. X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat. Commun. 5, 4447 (2014).

    Article  CAS  Google Scholar 

  46. Wang, J., Li, B. & Wu, M. X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl Acad. Sci. USA 112, 5005–5010 (2015).

    Article  CAS  Google Scholar 

  47. Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+ MHCII+ macrophages and dendritic cells. Immunity 42, 1197–1211 (2015).

    Article  CAS  Google Scholar 

  48. Popovic, Z. V. et al. The proteoglycan biglycan enhances antigen-specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. J. Immunol. 187, 6217–6226 (2011).

    Article  CAS  Google Scholar 

  49. Met, O. et al. The effect of a therapeutic dendritic cell-based cancer vaccination depends on the blockage of CTLA-4 signaling. Cancer Lett. 231, 247–256 (2006).

    Article  CAS  Google Scholar 

  50. Kato, M. et al. Enhanced anti-tumor immunity by superantigen-pulsed dendritic cells. Cancer Immunol. Immunother. 60, 1029–1038 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (grant nos 61771498, 51705543 and 31530023) to X.X., J.T. and T.H., and by National Institutes of Health grants AI089779 and AI 113458 and department funds to M.X.W. X.X. thanks the Youth 1000 Talents Program of China and 100 Talents Program of Sun Yat-Sen University (76120-18821104). J.W. thanks the 100 Talents Program of Sun Yat-Sen University. The authors thank the Wellman Center Photopathology Core for their help in the histology analysis during this project.

Author information

Authors and Affiliations

Authors

Contributions

J.W., H.-J.C., T.H., G.L., G.H., B.Y., J.T., M.X.W. and X.X. designed experiments, analysed data and wrote the manuscript. J.W., H.-J.C., T.H., Y.Y., G.L., G.H., S.X., C.Y. and X.X. performed the experiments. J.W., H.-J.C., G.L., T.H., S.X., G.H., C.Y., F.L. and X.X. performed statistical analyses of the data sets and aided in the preparation of displays that communicated the data sets. J.W., M.X.W. and X.X. provided conceptual advice. M.X.W. and X.X. supervised the study. All the authors discussed the results and assisted in the preparation of the manuscript.

Corresponding authors

Correspondence to Mei X. Wu or Xi Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–21, Supplementary Table 1, Supplementary Discussion and Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, HJ., Hang, T. et al. Physical activation of innate immunity by spiky particles. Nature Nanotech 13, 1078–1086 (2018). https://doi.org/10.1038/s41565-018-0274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0274-0

  • Springer Nature Limited

This article is cited by

Navigation