Skip to main content
Log in

Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

Antiferromagnets are promising components for spintronics due to their terahertz resonance, multilevel states and absence of stray fields. However, the zero net magnetic moment of antiferromagnets makes the detection of the antiferromagnetic order and the investigation of fundamental spin properties notoriously difficult. Here, we report an optical detection of Néel vector orientation through an ultra-sharp photoluminescence in the van der Waals antiferromagnet NiPS3 from bulk to atomically thin flakes. The strong correlation between spin flipping and electric dipole oscillator results in a linear polarization of the sharp emission, which aligns perpendicular to the spin orientation in the crystal. By applying an in-plane magnetic field, we achieve manipulation of the photoluminescence polarization. This correlation between emitted photons and spins in layered magnets provides routes for investigating magneto-optics in two-dimensional materials, and hence opens a path for developing opto-spintronic devices and antiferromagnet-based quantum information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Antiferromagnetic spin structure and sharp emission of NiPS3.
Fig. 2: Characterization of sharp peak X in NiPS3.
Fig. 3: Spin-induced linear polarization of PL and absorption anisotropy in NiPS3.
Fig. 4: Magnetic manipulation of PL polarization in the Voigt geometry.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support results in this article are available from the corresponding authors on reasonable request.

References

  1. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  2. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  3. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS  Google Scholar 

  4. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    CAS  Google Scholar 

  5. Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Google Scholar 

  6. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Google Scholar 

  7. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Google Scholar 

  8. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

    CAS  Google Scholar 

  9. Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    CAS  Google Scholar 

  10. Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Google Scholar 

  11. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    CAS  Google Scholar 

  12. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Google Scholar 

  13. Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016).

    Google Scholar 

  14. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    CAS  Google Scholar 

  15. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Google Scholar 

  16. Chu, H. et al. Linear magnetoelectric phase in ultrathin MnPS3 probed by optical second harmonic generation. Phys. Rev. Lett. 124, 027601 (2020).

    CAS  Google Scholar 

  17. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    CAS  Google Scholar 

  18. Du, K. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    CAS  Google Scholar 

  19. Kuo, C.-T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    CAS  Google Scholar 

  20. Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    Google Scholar 

  21. Piacentini, M., Khumalo, F. S., Olson, C. G., Anderegg, J. W. & Lynch, D. W. Optical transitions, XPS, electronic states in NiPS3. Chem. Phys. 65, 289–304 (1982).

    CAS  Google Scholar 

  22. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Google Scholar 

  23. Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).

    CAS  Google Scholar 

  24. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS  Google Scholar 

  25. Jungwirth, N. R. & Fuchs, G. D. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119, 057401 (2017).

    Google Scholar 

  26. Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).

    Google Scholar 

  27. Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).

    CAS  Google Scholar 

  28. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    CAS  Google Scholar 

  29. Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).

    Google Scholar 

  30. Bramwell, S. T. & Holdsworth, P. C. W. Magnetization and universal sub-critical behaviour in two-dimensional XY magnets. J. Phys. Condens. Matter 5, L53–L59 (1993).

    Google Scholar 

  31. Bramwell, S. T., Day, P., Hutchings, M. T., Thorne, J. R. G. & Visser, D. Neutron scattering and optical study of the magnetic properties of the two-dimensional ionic rubidium chromium bromide chloride ferromagnets Rb2CrCl3Br and Rb2CrCl2Br2. Inorg. Chem. 25, 417–421 (1986).

    CAS  Google Scholar 

  32. Tesařová, N. et al. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203 (2014).

    Google Scholar 

  33. Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–96 (2017).

    CAS  Google Scholar 

  34. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

    Google Scholar 

  35. Long, G. et al. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett. 20, 2452–2459 (2020).

    CAS  Google Scholar 

  36. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    CAS  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  41. Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).

    CAS  Google Scholar 

  42. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  45. Kurita, N. & Nakao, K. Band structure of magnetic layered semiconductor NiPS3. J. Phys. Soc. Jpn 58, 232–243 (1989

    CAS  Google Scholar 

  46. Setyawan, W. & Curtarolo, S. High-Throughput Electronic Band StructureCalculations: Challenges and Tools. Comput. Mater. Sci. 49, 299–312, (2010).

  47. Steiner, S. et al. Calculation of the Magnetic Anisotropy with Projected-AugmentedWave Methodology and the Case Study of Disordered Fe1−xCox Alloys. Phys. Rev. B 93, 224425, (2016).

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant no. 1945364. X.W. and X.L. acknowledge the financial support from Boston University and the Photonics Center at Boston University. The transmission electron microscopy imaging was performed at the Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under award no. 1541959. The Center for Nanoscale Systems is part of Harvard University. A.C. and S.S. acknowledge financial support from the US Department of Energy, Office of Science, Basic Energy Sciences Early Career Program under award no. DE-SC0018080. We acknowledge the computational resources through the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant no. ACI-1548562; and the National Energy Research Scientific Computing Center, a US Department of Energy Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. Z.L. and D.S. acknowledge support from the US Department of Energy (no. DE-FG02-07ER46451) for high-field magnetospectroscopy measurements performed at National High Magnetic Field Laboratory, which is supported by the National Science Foundation through NSF/DMR-1644779 and the state of Florida. C.H.L. acknowledges support from the American Chemical Society Petroleum Research Fund (ACS PRF No. 61640-ND6).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and X.L. conceived the experiment. X.W. carried out PL and absorption measurements. X.W., J.C. and Z.L. conducted the magneto-PL measurements with assistance from D.S. at the National High Magnetic Field Laboratory. J.C. and X.W. prepared samples. J.C., H.K., T.L. and Q.T. carried out the sample characterization. A.C. and S.S. performed theoretical calculations. M.W. performed the time-resolved PL measurement under the supervision of C.H.L.; X.W. and X.L. performed the analysis and interpretation of the data. All authors assisted in the interpretation of data and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Xingzhi Wang or Xi Ling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Discussion.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cao, J., Lu, Z. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021). https://doi.org/10.1038/s41563-021-00968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00968-7

  • Springer Nature Limited

This article is cited by

Navigation