Skip to main content
Log in

Ancestral photoreceptor diversity as the basis of visual behaviour

  • Perspective
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Abstract

Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Hypothesis and definition of vertebrate photoreceptors.
Fig. 2: Retinal architecture across species.
Fig. 3: Cones as feature channels.
Fig. 4: Inner retinal layering and spectral sensitivity functions of visual behaviours.

Similar content being viewed by others

References

  1. Baden, T. Circuit mechanisms for colour vision in zebrafish. Curr. Biol. 31, R807–R820 (2021).

    CAS  PubMed  Google Scholar 

  2. Dacey, D. M. & Packer, O. S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427 (2003).

    CAS  PubMed  Google Scholar 

  3. Nilsson, D.-E. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41 (2021).

    PubMed  Google Scholar 

  4. Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).

    PubMed  Google Scholar 

  5. Baden, T. & Osorio, D. The retinal basis of vertebrate color vision. Annu. Rev. Vis. Sci. 5, 177–200 (2019).

    CAS  PubMed  Google Scholar 

  6. Hagen, J. F. D., Roberts, N. S. & Johnston, R. J. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev. Biol. 493, 40–66 (2023).

    CAS  PubMed  Google Scholar 

  7. Bartel, P., Janiak, F. K., Osorio, D. & Baden, T. Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Curr. Biol. 31, R235–R236 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelber, A. Bird colour vision – from cones to perception. Curr. Opin. Behav. Sci. 30, 34–40 (2019).

    Google Scholar 

  9. Baden, T. From water to land: the evolution of photoreceptor circuits for vision on land. PLoS Biol., https://doi.org/10.1371/journal.pbio.3002422 (2024).

  10. Qiu, Y. et al. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. https://doi.org/10.1016/j.cub.2021.05.017 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).

    CAS  PubMed  Google Scholar 

  12. Nadal-Nicolás, F. M. et al. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9, e56840 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Szatko, K. P. et al. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denman, D. J. et al. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7, e31209 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Franke, K. et al. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543054 (2023).

  16. Yoshimatsu, T. et al. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Sci. Adv. 7, 6815–6828 (2021).

    ADS  Google Scholar 

  17. Bartel, P., Yoshimatsu, T., Janiak, F. K. & Baden, T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr. Biol. (2021).

  18. Krauss, A. & Neumeyer, C. Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vis. Res. 43, 1273–1282 (2003).

    PubMed  Google Scholar 

  19. Khan, B. et al. Zebrafish larvae use stimulus intensity and contrast to estimate distance to prey. Curr. Biol. 33, 3179–3191.e4 (2023).

    CAS  PubMed  Google Scholar 

  20. Cronly-Dillon, J. R. & Muntz, W. R. A. The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol. 42, 481–493 (1965).

    CAS  PubMed  Google Scholar 

  21. Campenhausen, M. V. & Kirschfeld, K. Spectral sensitivity of the accessory optic system of the pigeon. J. Comp. Physiol. A 183, 1–6 (1998).

    Google Scholar 

  22. Wang, X., Roberts, P. A., Yoshimatsu, T., Lagnado, L. & Baden, T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep. 42, 112055 (2023).

    CAS  PubMed  Google Scholar 

  23. Kaneko, A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235, 133–153 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feuda, R., Hamilton, S. C., McInerney, J. O. & Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl Acad. Sci. USA 109, 18868–18872 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).

    CAS  PubMed  Google Scholar 

  26. Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Dev. Biol. 106, 12–19 (2020).

    PubMed  Google Scholar 

  27. Seifert, M., Baden, T. & Osorio, D. The retinal basis of vision in chicken. Semin. Cell Dev. Biol. 106, 106–115 (2020).

    CAS  PubMed  Google Scholar 

  28. van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).

    PubMed  Google Scholar 

  29. Baden, T. Vertebrate vision: lessons from non-model species. Semin. Cell Dev. Biol. 106, 1–4 (2020).

    PubMed  Google Scholar 

  30. Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).

  31. Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).

    PubMed  Google Scholar 

  32. Baden, T., Schubert, T., Berens, P. & Euler, T. The functional organization of vertebrate retinal circuits for vision. Oxf. Res. Encycl. Neurosci. https://doi.org/10.1093/acrefore/9780190264086.013.68 (2018).

  33. Behrens, C. et al. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5, 1206–1217 (2016).

    Google Scholar 

  34. Goetz, J. et al. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep. 40, 111040 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Günther, A. et al. Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina. J. Neurosci. 41, 5015–5028 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Collin, S. P. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Exp. Optom. 91, 85–95 (2008).

    PubMed  Google Scholar 

  37. Mass, A. M. Visual field organization and retinal resolution in the beluga whale Delphinapterus leucas (Pallas). Dokl. Biol. Sci. 381, 555–558 (2001).

    CAS  PubMed  Google Scholar 

  38. Lisney, T. J., Wylie, D. R., Kolominsky, J. & Iwaniuk, A. N. Eye morphology and retinal topography in hummingbirds (Trochilidae: Aves). Brain Behav. Evol. 86, 176–190 (2015).

    PubMed  Google Scholar 

  39. Ali, M.-A. & Anctil, M. Retinas of Fishes: An Atlas (Springer, 1976).

  40. de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).

    Article  PubMed  Google Scholar 

  41. Bowmaker, J. K., Loew, E. R. & Ott, M. The cone photoreceptors and visual pigments of chameleons. J. Comp. Physiol. A https://doi.org/10.1007/s00359-005-0014-4 (2005).

    Article  Google Scholar 

  42. Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Justin Marshall, N. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Vorobyev, M. Ecology and evolution of primate colour vision. Clin. Exp. Optom. 87, 230–238 (2004).

    PubMed  Google Scholar 

  44. Stieb, S. M. et al. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci. Rep. 9, 16459 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. Applebury, M. L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000).

    CAS  PubMed  Google Scholar 

  46. Ricci, V., Ronco, F., Boileau, N. & Salzburger, W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. Sci. Adv. 9, eadg6568 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).

    Article  PubMed  Google Scholar 

  48. Bloomfield, S. A. & Dacheux, R. F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20, 351–384 (2001).

    CAS  PubMed  Google Scholar 

  49. Li, Y. N., Tsujimura, T., Kawamura, S. & Dowling, J. E. Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520, 3786–3802 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Hellevik, A. M. et al. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557433 (2023).

  51. Mariani, A. P. Neuronal and synaptic organization of the outer plexiform layer of the pigeon retina. Am. J. Anat. 179, 25–39 (1987).

    CAS  PubMed  Google Scholar 

  52. Yamagata, M., Yan, W. & Sanes, J. R. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 10, e63907 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature, https://doi.org/10.1038/s41586-023-06638-9 (2023).

  54. Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsukamoto, Y. & Omi, N. Classification of mouse retinal bipolar cells: type-specific connectivity with special reference to rod-driven aii amacrine pathways. Front. Neuroanat. 11, 92 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Yoshimatsu, T., Schröder, C., Nevala, N. E., Berens, P. & Baden, T. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107, 320–337.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zimmermann, M. J. Y. et al. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28, 2018–2032.e5 (2018).

    CAS  PubMed  Google Scholar 

  58. Schröder, C., Oesterle, J., Berens, P., Yoshimatsu, T. & Baden, T. Distinct synaptic transfer functions in same-type photoreceptors. eLife 10, e67851 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Novales Flamarique, I. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc. R. Soc. B 280, 20122490 (2012).

    PubMed  Google Scholar 

  60. Browman, H. I., Novales-Flamarique, I. & Hawryshyn, C. W. Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J. Exp. Biol. 186, 187–198 (1994).

    Google Scholar 

  61. Orger, M. B. & Baier, H. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci. 22, 275–281 (2005).

    PubMed  Google Scholar 

  62. Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baudin, J., Angueyra, J. M., Sinha, R. & Rieke, F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 8, e39166 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L. & Dacey, D. M. Blue–yellow opponency in primate S cone photoreceptors. J. Neurosci. 30, 568–572 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Toomey, M. B. & Corbo, J. C. Evolution, development and function of vertebrate cone oil droplets. Front. Neural Circuits 11, 97 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Kemmler, R., Schultz, K., Dedek, K., Euler, T. & Schubert, T. Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J. Neurosci. 34, 11826–11843 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yedutenko, M., Howlett, M. H. C. & Kamermans, M. Enhancing the dark side: asymmetric gain of cone photoreceptors underpins their discrimination of visual scenes based on skewness. J. Physiol. 600, 123–142 (2022).

    CAS  PubMed  Google Scholar 

  68. Kamermans, M., van Dijk, B. W. & Spekreijse, H. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. J. Gen. Physiol. 97, 819–843 (1991).

    CAS  PubMed  Google Scholar 

  69. Woźniak, B. & Dera, J. Light Absorption in Sea Water (Springer, 2006).

  70. Nityananda, V. & Read, J. C. A. Stereopsis in animals: evolution, function and mechanisms. J. Exp. Biol. 220, 2502–2512 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Yonas, A., Elieff, C. A. & Arterberry, M. E. Emergence of sensitivity to pictorial depth cues: charting development in individual infants. Infant Behav. Dev. 25, 495–514 (2002).

    Google Scholar 

  72. Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    CAS  PubMed  Google Scholar 

  73. Bollmann, J. H. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5, 269–293 (2019).

    PubMed  Google Scholar 

  74. Robles, E., Laurell, E. & Baier, H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24, 2085–2096 (2014).

    CAS  PubMed  Google Scholar 

  75. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).

    ADS  CAS  PubMed  Google Scholar 

  76. Bae, J. A. et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293–1306.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kubo, F. et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81, 1344–1359 (2014).

    CAS  PubMed  Google Scholar 

  78. Semmelhack, J. L. et al. A dedicated visual pathway for prey detection in larval zebrafish. eLife 3, e04878 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Kölsch, Y. et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662.e9 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Zhou, M. et al. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr. Biol. 30, 2927–2942.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, S. et al. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84, 708–715 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jacoby, J. & Schwartz, G. W. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion. J. Neurosci. 37, 610–625 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

    ADS  CAS  PubMed  Google Scholar 

  84. Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    ADS  CAS  PubMed  Google Scholar 

  85. Klaassen, L. J., de Graaff, W., Van Asselt, J. B., Klooster, J. & Kamermans, M. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J. Neurophysiol. 116, 2799–2814 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Torvund, M. M., Ma, T. S., Connaughton, V. P., Ono, F. & Nelson, R. F. Cone signals in monostratified and bistratified amacrine cells of adult zebrafish retina. J. Comp. Neurol. 525, 1532–1557 (2017).

    CAS  PubMed  Google Scholar 

  87. Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Masland, R. H. The tasks of amacrine cells. Vis. Neurosci. 29, 3–9 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Rosa, J. M., Ruehle, S., Ding, H. & Lagnado, L. Crossover inhibition generates sustained visual responses in the inner retina. Neuron 90, 308–319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fornetto, C., Tiso, N., Pavone, F. S. & Vanzi, F. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae. BMC Biol. 18, 172 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Guggiana Nilo, D. A., Riegler, C., Hübener, M. & Engert, F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr. Biol. 31, 1945–1953.e5 (2021).

    CAS  PubMed  Google Scholar 

  92. Menzel, R. in Comparative Physiology and Evolution of Vision in Invertebrates (ed. Autrum, H.) 503–580 (Springer, 1979).

  93. Wade, N. J. & Brožek, J. Purkinje’s Vision: The Dawning of Neuroscience (Pyschology Press, 2001).

  94. Arpa, S., Ritschel, T., Myszkowski, K., Çapın, T. & Seidel, H.-P. Purkinje images: conveying different content for different luminance adaptations in a single image. Comput. Graph. Forum 34, 116–126 (2015).

    Google Scholar 

  95. Birukow, G. Purkinjesches Phänomen und Farbensehen beim Grasfrosch (Rana temporaria) 1. Z. Vgl. Physiol. 27, 41–79 (1939).

    Google Scholar 

  96. Silver, P. H. Photopic spectral sensitivity of the neon tetra [Paracheirodon innesi (Myers)] found by the use of a dorsal light reaction. Vis. Res. 14, 329–334 (1974).

    CAS  PubMed  Google Scholar 

  97. Von Holst, E. Über den Lichtrückenreflex bei Fischen. Publ. Stat. Zool. Napoli 15, 143–158 (1935).

    Google Scholar 

  98. Preuss, T. & Budelmann, B. U. A dorsal light reflex in a squid. J. Exp. Biol. 198, 1157–1159 (1995).

    CAS  PubMed  Google Scholar 

  99. Brodsky, M. C. Dissociated vertical divergence: perceptual correlates of the human dorsal light reflex. Arch. Ophthalmol. 120, 1174–1178 (2002).

    PubMed  Google Scholar 

  100. Yager, D. Behavioural measures of the spectral sensitivity of the dark-adapted goldfish. Nature 220, 1052–1053 (1968).

    ADS  CAS  PubMed  Google Scholar 

  101. Alexander, E. et al. Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimation. Curr. Biol. 32, 5008–5021.e8 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, Y., Huang, R., Nörenberg, W. & Arrenberg, A. B. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr. Biol. 32, 2505–2516.e8 (2022).

    CAS  PubMed  Google Scholar 

  103. Dehmelt, F. A. et al. Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. eLife 10, e63355 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kretschmer, F., Ahlers, M. T., Ammermüller, J. & Kretzberg, J. Automated measurement of spectral sensitivity of motion vision during optokinetic behavior. Neurocomputing 84, 39–46 (2012).

    Google Scholar 

  105. Moskowitz-Cook, A. The development of photopic spectral sensitivity in human infants. Vis. Res. 19, 1133–1142 (1979).

    CAS  PubMed  Google Scholar 

  106. Schaerer, S. Die Wellenlängenabhängigkeit des Bewegungssehens bei Goldfischen (Carassius auratus) und Schildkröten (Pseudemys scripta elegans) gemessen mit der optomotorischen Reaktion. PhD thesis, Univ. Mainz (1993).

  107. Maximov, V. V. Environmental factors which may have led to the appearance of colour vision. Phil. Trans. R. Soc. B 355, 1239–1242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Borst, A. & Euler, T. Seeing things in motion: models, circuits, and mechanisms. Neuron 71, 974–994 (2011).

    CAS  PubMed  Google Scholar 

  109. Cameron, D. A. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis. Neurosci. 19, 365–372 (2002).

    PubMed  Google Scholar 

  110. Losey, G. S. et al. The UV visual world of fishes: a review. J. Fish. Biol. 54, 921–943 (1999).

    Google Scholar 

  111. Bianco, I. H., Kampff, A. R. & Engert, F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5, 101 (2011).

    PubMed  PubMed Central  Google Scholar 

  112. Janssen, J. Searching for zooplankton just outside Snell’s window. Limmol. Oceanogr. 26, 1168–1171 (1981).

    ADS  Google Scholar 

  113. Mearns, D. S., Donovan, J. C., Fernandes, A. M., Semmelhack, J. L. & Baier, H. Deconstructing hunting behavior reveals a tightly coupled stimulus–response loop. Curr. Biol. 30, 54–69.e9 (2020).

    CAS  PubMed  Google Scholar 

  114. Schmitt, E. A. & Dowling, J. E. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404, 515–536 (1999).

    CAS  PubMed  Google Scholar 

  115. Novales Flamarique, I. Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proc. R. Soc. B 283, 20160058 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Burton, C. E., Zhou, Y., Bai, Q. & Burton, E. A. Spectral properties of the zebrafish visual motor response. Neurosci. Lett. 646, 62–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Guggiana-Nilo, D. A. & Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Kane, E. et al. Sensorimotor structure of Drosophila larva phototaxis. Proc. Natl Acad. Sci. USA (2013).

  119. Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    ADS  CAS  PubMed  Google Scholar 

  121. Muntz, W. R. A. Effectiveness of different colors of light in releasing positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol. 25, 712–720 (1962).

    Google Scholar 

  122. Hailman, J. P. & Jaeger, R. G. Phototactic responses to spectrally dominant stimuli and use of colour vision by adult anuran amphibians: a comparative survey. Anim. Behav. 22, 757–795 (1974).

    CAS  PubMed  Google Scholar 

  123. Muntz, W. R. A., Partridge, J. C., Williams, S. R. & Jackson, C. Spectral sensitivity in the guppy (Poecilia reticulata) measured using the dorsal light response. Mar. Freshw. Behav. Physiol. 28, 163–176 (1996).

    Google Scholar 

  124. Magaña-Hernández, L. et al. The functionally plastic rod photoreceptors in the simplex retina of little skate (Leucoraja erinacea) exhibit a hybrid rod–cone morphology and enhanced synaptic connectivity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546621 (2023).

  125. Seifert, M., Roberts, P. A., Kafetzis, G., Osorio, D. A. & Baden, T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat. Commun. 14, 5308 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kojima, K. et al. Evolutionary adaptation of visual pigments in geckos for their photic environment. Sci. Adv. 7, eabj1316 (2021).

    ADS  CAS  PubMed  Google Scholar 

  127. Peng, Y.-R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237.e22 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Field, G. D. et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673–677 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arrese, C. A., Hart, N. S., Thomas, N., Beazley, L. D. & Shand, J. Trichromacy in Australian marsupials. Curr. Biol. 12, 657–660 (2002).

    CAS  PubMed  Google Scholar 

  130. Ebeling, W., Natoli, R. C. & Hemmi, J. M. Diversity of color vision: not all Australian marsupials are trichromatic. PLoS ONE 5, e14231 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shu, D. G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003).

    ADS  CAS  PubMed  Google Scholar 

  132. Shu, D. G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42–46 (1999).

    ADS  CAS  Google Scholar 

  133. Briggs, D. E. G. Extraordinary fossils reveal the nature of Cambrian life: a commentary on Whittington (1975) ‘The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia’. Phil. Trans. R. Soc. B 370, 20140313 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. Daley, A. C. & Edgecombe, G. D. Morphology of Anomalocaris canadensis from the Burgess Shale. J. Paleontol. 88, 68–91 (2014).

    ADS  Google Scholar 

  135. Brazeau, M. D. & Friedman, M. The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  136. Moysiuk, J. & Caron, J.-B. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr. Biol. 32, 3302–3316.e2 (2022).

    CAS  PubMed  Google Scholar 

  137. Luque, J. et al. Evolution of crab eye structures and the utility of ommatidia morphology in resolving phylogeny. Preprint at bioRxiv https://doi.org/10.1101/786087 (2019).

  138. Alkaladi, A. & Zeil, J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J. Comp. Neurol. 522, 1264–1283 (2014).

    PubMed  Google Scholar 

  139. Didion, J. E. Spectral Sensitivity Underlying Two Different Visual Behaviors in the Fiddler Crab, Uca pugilator. PhD thesis, Univ. Cincinnati (2019).

  140. Cronin, T. W. & Jinks, R. N. Ontogeny of vision in marine crustaceans. Am. Zool. 41, 1098–1107 (2001).

    Google Scholar 

  141. Cronin, T. W., Porter, M. L., Bok, M. J., Caldwell, R. L. & Marshall, J. Colour vision in stomatopod crustaceans. Phil. Trans. R. Soc. B 377, 20210278 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Thoen, H. H., How, M. J., Chiou, T.-H. & Marshall, J. A different form of color vision in mantis shrimp. Science 343, 411–413 (2014).

    ADS  CAS  PubMed  Google Scholar 

  143. Arikawa, K. The eyes and vision of butterflies. J. Physiol. 595, 5457–5464 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from Drosophila. J. Comp. Physiol. A 206, 183–198 (2020).

    Google Scholar 

  145. Feuda, R. et al. Phylogenomics of opsin genes in Diptera reveals lineage-specific events and contrasting evolutionary dynamics in Anopheles and Drosophila. Genome Biol. Evol. 13, evab170 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Borst, A. & Groschner, L. N. How flies see motion. Annu. Rev. Neurosci. 46, 17–37 (2023).

    CAS  PubMed  Google Scholar 

  147. Longden, K. D., Rogers, E. M., Nern, A., Dionne, H. & Reiser, M. B. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat. Commun. 14, 7695 (2023).

    ADS  Google Scholar 

  148. Nilsson, D. E. The evolution of eyes and visually guided behaviour. Phil. Trans. R. Soc. B 364, 2833–2847 (2009).

    PubMed  PubMed Central  Google Scholar 

  149. Buschbeck, E. & Bok, M. (eds) Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes (Springer, 2023).

  150. Hanke, F. D. & Osorio, D. C. Editorial: Vision in cephalopods. Front. Physiol. 9, 18 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank D. E. Nilsson, A. Kelber, J. Corbo, E. Mitchell, S. Laughlin, G. Jekeley, C. Yovanovich, K. Donner, C. Fornetto, D. Schoppik, P. Martin, T. Yoshimatsu, T. Euler, N. Hart, S. Collin and many others for inputs on some of the concepts elaborated in this article. Funding was provided by the Wellcome Trust (Investigator Award in Science 220277/Z20/Z), the European Research Council (ERC-StG ‘NeuroVisEco’ 677687), UKRI (BBSRC, BB/R014817/1 and BB/W013509/1), the Leverhulme Trust (PLP-2017-005, RPG-2021-026 and RPG-2-23-042) and the Lister Institute for Preventive Medicine. This research was funded in part by the Wellcome Trust (220277/Z20/Z). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Baden.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Joseph Corbo and Almut Kelber for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baden, T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 8, 374–386 (2024). https://doi.org/10.1038/s41559-023-02291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02291-7

  • Springer Nature Limited

Navigation