Skip to main content
Log in

Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries

  • Article
  • Published:
Hypertension Research Submit manuscript

A Correction to this article was published on 20 September 2022

This article has been updated

Abstract

Silybin is a flavonolignan extracted from the seeds of Silybum marianum that has been used as a dietary supplement for treating hepatic diseases and components of metabolic syndrome such as diabetes, obesity and hypertension. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels that regulate vascular endothelial function and blood flow. However, the relationship between silybin and TRPV4 channels in small mesenteric arteries remains unknown. In our study, we carried out a molecular docking experiment by using Discovery Studio v3.5 to predict the binding of silybin to TRPV4. Activation of TRPV4 with silybin was detected via intracellular Ca2+ concentration ([Ca2+]i) measurement and patch clamp experiments. The molecular docking results showed that silybin was likely to bind to the ankyrin repeat domain of TPRV4. [Ca2+]i measurements in mesenteric arterial endothelial cells (MAECs) and TRPV4-overexpressing HEK293 (TRPV4–HEK293) cells demonstrated that silybin induced Ca2+ influx by activating TRPV4 channels. The patch clamp experiments indicated that in TRPV4–HEK293 cells, silybin induced TRPV4-mediated cation currents. In addition, in high-salt-induced hypertensive mice, oral administration of silybin decreased systolic blood pressure (SBP) and significantly improved the arterial dilatory response to acetylcholine. Our findings provide the first evidence that silybin could induce mesenteric endothelium-dependent vasodilation and reduce blood pressure in high-salt-induced hypertensive mice via TRPV4 channels, thereby revealing the potential effect of silybin on preventing endothelial dysfunction-related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Bunchorntavakul C, Reddy KR. Review article: herbal and dietary supplement hepatotoxicity. Aliment Pharmacol Ther. 2013;37:3–17.

    Article  CAS  PubMed  Google Scholar 

  2. Federico A, Dallio M, Loguercio C. Silymarin/Silybin and chronic liver disease: a marriage of many years. Molecules. 2017;22:191.

    Article  PubMed Central  Google Scholar 

  3. Loguercio C, Festi D. Silybin and the liver: from basic research to clinical practice. World J Gastroenterol. 2011;17:2288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janeczko M, Kochanowicz E. Silymarin, a popular dietary supplement shows anti-candida activity. Antibiotics. 2019;8:206.

    Article  CAS  PubMed Central  Google Scholar 

  5. Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I, et al. Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol. 2011;10:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sciacqua A, Perticone M, Tripepi G, Addesi D, Cassano V, Maio R, et al. Metabolic and vascular effects of silybin in hypertensive patients with high 1-h post-load plasma glucose. Intern Emerg Med. 2019;14:77–84.

    Article  PubMed  Google Scholar 

  7. Li X, Lin Y, Zhou H, Li Y, Wang A, Wang H, et al. Puerarin protects against endothelial dysfunction and end-organ damage in Ang II-induced hypertension. Clin Exp Hypertens. 2017;39:58–64.

    Article  PubMed  Google Scholar 

  8. Gonzalez J, Valls N, Brito R, Rodrigo R. Essential hypertension and oxidative stress: new insights. World J Cardiol. 2014;6:353–66.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511–40.

    Article  PubMed  Google Scholar 

  10. Heathcote HR, Lee MD, Zhang X, Saunter CD, Wilson C, McCarron JG. Endothelial TRPV4 channels modulate vascular tone by Ca2+-induced Ca2+ release at inositol 1,4,5-trisphosphate receptors. Br J Pharmacol. 2019;176:3297–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Filosa JA, Yao X, Rath G. TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol. 2013;61:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen YL, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. Curr Top Membr. 2020;85:89–117.

    Article  CAS  PubMed  Google Scholar 

  13. O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflug Arch. 2005;451:193–203.

    Article  Google Scholar 

  14. Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, et al. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J Biol Chem. 2018;293:5307–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, et al. Role of transient receptor potential vanilloid 4 in vascular function. Front Mol Biosci. 2021;8:677661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou T, Wang Z, Guo M, Zhang K, Geng L, Mao A, et al. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. Food Funct. 2020;11:10137–48.

    Article  CAS  PubMed  Google Scholar 

  17. Shao J, Han J, Zhu Y, Mao A, Wang Z, Zhang K, et al. Curcumin induces endothelium-dependent relaxation by activating endothelial TRPV4 channels. J Cardiovasc Transl Res. 2019;12:600–7.

    Article  PubMed  Google Scholar 

  18. Zhang X, Mao A, Xiao W, Zhang P, Han X, Zhou T, et al. Morin induces endothelium-dependent relaxation by activating TRPV4 channels in rat mesenteric arteries. Eur J Pharmacol. 2019;859:172561.

    Article  CAS  PubMed  Google Scholar 

  19. Meduru H, Wang YT, Tsai JJ, Chen YC. Finding a potential dipeptidyl peptidase-4 (DPP-4) inhibitor for type-2 diabetes treatment based on molecular docking, pharmacophore generation, and molecular dynamics simulation. Int J Mol Sci. 2016;17:920.

    Article  PubMed Central  Google Scholar 

  20. Tang H, Wang H, Lin Q, Fan F, Zhang F, Peng X, et al. Loss of IP3 receptor-mediated Ca(2+) release in mouse B cells results in abnormal B cell development and function. J Immunol. 2017;199:570–80.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Sun C, Li H, Tang C, Kan H, Yang Z, et al. TRPV4 (Transient Receptor Potential Vanilloid 4) mediates endothelium-dependent contractions in the aortas of hypertensive mice. Hypertension. 2018;71:134–42.

    Article  CAS  PubMed  Google Scholar 

  22. Khaldan A, Bouamrane S, En-Nahli F, El-Mernissi R, El Khatabi K, Hmamouchi R, et al. Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon 2021;7:e06603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi N, Hamada-Nakahara S, Itoh Y, Takemura K, Shimada A, Ueda Y, et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun. 2014;5:4994.

    Article  CAS  PubMed  Google Scholar 

  24. Inada H, Procko E, Sotomayor M, Gaudet R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry. 2012;51:6195–206.

    Article  CAS  PubMed  Google Scholar 

  25. Kren V. Chirality matters: biological activity of optically pure silybin and its congeners. Int J Mol Sci. 2021;22:7885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie Y, Zhang D, Zhang J, Yuan J. Metabolism, transport and drug-drug interactions of silymarin. Molecules. 2019;24:3693.

    Article  CAS  PubMed Central  Google Scholar 

  27. Aghazadeh S, Amini R, Yazdanparast R, Ghaffari SH. Anti-apoptotic and anti-inflammatory effects of Silybum marianum in treatment of experimental steatohepatitis. Exp Toxicol Pathol. 2011;63:569–74.

    Article  PubMed  Google Scholar 

  28. Cacciapuoti F, Scognamiglio A, Palumbo R, Forte R, Cacciapuoti F. Silymarin in non alcoholic fatty liver disease. World J Hepatol. 2013;5:109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marino Z, Crespo G, D’Amato M, Brambilla N, Giacovelli G, Rovati L, et al. Intravenous silibinin monotherapy shows significant antiviral activity in HCV-infected patients in the peri-transplantation period. J Hepatol. 2013;58:415–20.

    Article  CAS  PubMed  Google Scholar 

  30. Abenavoli L, Izzo AA, Milic N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018;32:2202–13.

    Article  PubMed  Google Scholar 

  31. Pignatelli P, Carnevale R, Menichelli D. Silybin and metabolic disorders. Intern Emerg Med. 2019;14:1–3.

    Article  PubMed  Google Scholar 

  32. Hajiaghamohammadi AA, Ziaee A, Oveisi S, Masroor H. Effects of metformin, pioglitazone, and silymarin treatment on non-alcoholic Fatty liver disease: a randomized controlled pilot study. Hepat Mon. 2012;12:e6099.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yao J, Zhi M, Gao X, Hu P, Li C, Yang X. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz J Med Biol Res. 2013;46:270–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wah Kheong C, Nik Mustapha NR, Mahadeva S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2017;15:1940–9 e1948.

    Article  PubMed  Google Scholar 

  35. Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther. 2017;177:9–22.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang T, Kawaguchi N, Yoshihara K, Hayama E, Furutani Y, Kawaguchi K, et al. Silibinin efficacy in a rat model of pulmonary arterial hypertension using monocrotaline and chronic hypoxia. Respir Res. 2019;20:79.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perticone F, Sciacqua A, Maio R, Perticone M, Maas R, Boger RH, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol. 2005;46:518–23.

    Article  CAS  PubMed  Google Scholar 

  38. Yao J, Zhi M, Minhu C. Effect of silybin on high-fat-induced fatty liver in rats. Braz J Med Biol Res. 2011;44:652–9.

    CAS  PubMed  Google Scholar 

  39. Sun YH, Zhao J, Jin HT, Cao Y, Ming T, Zhang LL, et al. Vasorelaxant effects of the extracts and some flavonoids from the buds of Coreopsis tinctoria. Pharm Biol. 2013;51:1158–64.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang BN, Hou YL, Liu BJ, Liu QM, Qiao GF. The Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation. Iran J Pharm Res. 2010;9:303–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan Z, Feng T, Shan L, Cai B, Chu W, Niu H, et al. Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother Res. 2008;22:1428–33.

    Article  CAS  PubMed  Google Scholar 

  42. Ham J, Lim W, Bazer FW, Song G. Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J Cell Physiol. 2018;233:1638–49.

    Article  CAS  PubMed  Google Scholar 

  43. Kim SH, Kim KY, Yu SN, Seo YK, Chun SS, Yu HS, et al. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis. BMC Cancer. 2016;16:452.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ham J, Kim J, Bazer FW, Lim W, Song G. Silibinin-induced endoplasmic reticulum stress and mitochondrial dysfunction suppress growth of endometriotic lesions. J Cell Physiol. 2019;234:4327–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was fully supported by the National Natural Science Foundation of China [81622007, 81960662, 81800430], the Chang Jiang Scholars Program [Q2015106], Fundamental Research Funds for the Central Universities [JUSRP51704A], the National First-Class Discipline Program of Food Science and Technology [JUFSTR20180101], Postdoctoral Research Funding Program of Jiangsu Province [2020Z427], Wuxi Health Commission [1286010241210430], Wuxi Health Commission grant no. M202044 and Foundation of Wuxi Science and Technology Bureau grant no. CSE31N1702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the version of this article initially published, the acknowledgements section omitted Wuxi Health Commission grant no. M202044 and Foundation of Wuxi Science and Technology Bureau grant no. CSE31N1702.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Peng, Y., Zheng, B. et al. Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries. Hypertens Res 45, 1954–1963 (2022). https://doi.org/10.1038/s41440-022-01000-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01000-4

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation