Skip to main content

Advertisement

Log in

Alcohol intake and the risk of chronic kidney disease: results from a systematic review and dose–response meta-analysis

  • Review Article
  • Published:
European Journal of Clinical Nutrition Submit manuscript

Abstract

Many prospective cohort studies have investigated the association between the consumption of alcohol and CKD risk and have revealed inconsistent results. In the present study, we aimed to perform a meta-analysis of these studies to assess this association.We searched the PubMed and Embase databases up to 2020 and reviewed the reference lists of relevant articles to identify appropriate studies. We calculated the pooled relative risks with 95% CIs using random effects models, and then performed subgroup and meta-regression analyses. Dose–response meta-analyses were performed by sex separately. We identified 25 eligible prospective cohort studies, including 514,148 participants and 35,585 incident CKD cases. Compared with the category of minimal alcohol intake, light (RR = 0.90, I2 = 49%), moderate (RR = 0.86, I2 = 40%), and heavy (RR = 0.85, I2 = 51%) alcohol intake were associated with a lower risk of CKD. Subgroup meta-analysis by sex indicated that light (RR = 0.92, I2 = 0%), moderate (RR = 0.83, I2 = 39%) and heavy (RR = 0.76, I2 = 40%), alcohol consumption were inversely associated with CKD risk in male. Dose–response meta-analyses detected a nonlinear inverse association between alcohol consumption and the risk of CKD in all participants and linear inverse association in female participants. This meta-analysis shows that light (<12 g/day), moderate (12–24 g/day), and heavy (>24 g/day) alcohol consumption are protective against chronic kidney disease in adult participants especially in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: Overall relative risks (RRs) with 95% confidence intervals (CIs) of CKD for light alcohol consumption (0–12 g/day), moderate alcohol consumption (12–24 g/day), heavy alcohol consumption (>24 g/day), and used to drink alcohol compared with reference groups.
Fig. 3: Funnel plots of publication bias.
Fig. 4

Similar content being viewed by others

References

  1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.

    Article  PubMed  Google Scholar 

  2. Yasmin A, Zaman HH. Chronic kidney disease screening methods and its implication for Malaysia: an in depth review. Glob J Health Sci. 2015;7:96–109.

    Google Scholar 

  3. Foundation NK, Doqi K. K\DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:s1–s266.

    Google Scholar 

  4. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  5. Jha V. Current status of chronic kidney disease care in southeast Asia. Semin Nephrol. 2009;29:487–96.

    Article  PubMed  Google Scholar 

  6. Ritz E, Schwenger V. Lifestyle modification and progressive renal failure. Nephrology. 2010;10:387–92.

    Article  Google Scholar 

  7. Dawson DA, Grant BF, Stinson FS, Chou PS. Toward the attainment of low-risk drinking goals: a 10-year progress report. Alcohol Clin Exp Res. 2010;28:1371–8.

    Article  Google Scholar 

  8. Perneger TV, Whelton PK, Puddey IB, Klag MJ. Risk of end-stage renal disease associated with alcohol consumption. Am J Epidemiol. 1999;150:1275–81.

    Article  CAS  PubMed  Google Scholar 

  9. Fored CM, Ejerblad E, Fryzek JP, Lambe M, Lindblad P, Nyrén O, et al. Socio-economic status and chronic renal failure: a population-based case-control study in Sweden. Nephrol Dial Transplant. 2003;18:82–8.

    Article  PubMed  Google Scholar 

  10. Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Brabec BA, O’Corragain OA, Edmonds PJ, et al. High alcohol consumption and the risk of renal damage: a systematic review and meta-analysis. QJM. 2015;108:539–48.

    Article  CAS  PubMed  Google Scholar 

  11. Knobloch K, Yoon U, Vogt PM. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J Cranio-Maxillofac Surg. 2011;39:91–92.

    Article  Google Scholar 

  12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  13. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280:1690–1.

    Article  CAS  PubMed  Google Scholar 

  14. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  15. Higgins JP, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med. 2004;23:1663–82.

    Article  PubMed  Google Scholar 

  16. Xu C, Doi SAR. The robust error meta-regression method for dose-response meta-analysis. Int J Evid Based Health. 2018;16:138–44.

    Article  Google Scholar 

  17. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8:551–61.

    Article  CAS  PubMed  Google Scholar 

  18. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1998;316:469–71.

    Article  Google Scholar 

  19. Menon V, Katz R, Mukamal K, Kestenbaum B, Boer IHD, Siscovick DS, et al. Alcohol consumption and kidney function decline in the elderly: alcohol and kidney disease. Nephrol Dial Transplant. 2010;25:3301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knight EL, Stampfer MJ, Rimm EB, Hankinson SE, Curhan GC. Moderate alcohol intake and renal function decline in women: a prospective study. Nephrol Dial Transplant. 2003;18:1549–54.

    Article  PubMed  Google Scholar 

  21. Foster MC, Hwang SJ, Massaro JM, Jacques PF, Fox CS, Chu AY. Lifestyle factors and indices of kidney function in the Framingham Heart Study. Am J Nephrol. 2015;41:267–74.

    Article  PubMed  Google Scholar 

  22. Shankar A, Klein R, Klein BEK. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol. 2006;164:263–71.

    Article  PubMed  Google Scholar 

  23. Stengel B, Tarvercarr ME, Powe NR, Eberhardt MS, Brancati FL. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology. 2003;14:479–87.

    PubMed  Google Scholar 

  24. Hu EA, Lazo M, Rosenberg SD, Grams ME, Steffen LM, Coresh J, et al. Alcohol consumption and incident kidney disease: results from the atherosclerosis risk in communities study. J Ren Nutr. 2020;30:22–30.

    Article  CAS  PubMed  Google Scholar 

  25. Schaeffner ES, Kurth T, de Jong PE, Glynn RJ, Buring JE, Gaziano JM. Alcohol consumption and the risk of renal dysfunction in apparently healthy men. Arch Intern Med. 2005;165:1048–53.

    Article  PubMed  Google Scholar 

  26. Koning SH, Gansevoort RT, Mukamal KJ, Rimm EB, Bakker SJL, Joosten MM. Alcohol consumption is inversely associated with the risk of developing chronic kidney disease. Kidney Int. 2015;87:1009–16.

    Article  CAS  PubMed  Google Scholar 

  27. Buja A, Scafato E, Baggio B, Sergi G, Maggi S, Rausa G, et al. Renal impairment and moderate alcohol consumption in the elderly. Results from the Italian Longitudinal Study on Aging (ILSA). Public Health Nutr. 2011;14:1907–18.

    Article  PubMed  Google Scholar 

  28. Reynolds K, Gu D, Chen J, Tang X, Yau CL, Yu L, et al. Alcohol consumption and the risk of end-stage renal disease among Chinese men. Kidney Int. 2008;73:870–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ryoma M, Takuro M, Shotaro K, Akira K, Hiroaki T, Natsumi M, et al. The association between unhealthy lifestyle behaviors and the prevalence of chronic kidney disease (CKD) in middle-aged and older men. J Epidemiol. 2016;26:378–85.

    Article  Google Scholar 

  30. Kanda E, Muneyuki T, Suwa K, Nakajima K. Alcohol and exercise affect declining kidney function in healthy males regardless of obesity: a prospective cohort study. PLoS ONE. 2015;10:e0134937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wakasugi M, Kazama JJ, Yamamoto S, Kawamura K, Narita I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: a population-based cohort study. Hypertens Res. 2013;36:328–33.

    Article  PubMed  Google Scholar 

  32. Nakanishi N, Fukui M, Tanaka M, Toda H, Imai S, Yamazaki M, et al. Low urine pH is a predictor of chronic kidney disease. Kidney Blood Press Res. 2012;35:77–81.

    Article  CAS  PubMed  Google Scholar 

  33. Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71:159–66.

    Article  CAS  PubMed  Google Scholar 

  34. Nagai K, Saito C, Watanabe F, Ohkubo R, Sato C, Kawamura T, et al. Annual incidence of persistent proteinuria in the general population from Ibaraki annual urinalysis study. Clin Exp Nephrol. 2013;17:255–60.

    Article  PubMed  Google Scholar 

  35. Qin X, Wang Y, Li Y, Xie D, Tang G, Wang B, et al. Risk factors for renal function decline in adults with normal kidney function: a 7-year cohort study. J Epidemiol Community Health. 2015;69:782–8.

    Article  PubMed  Google Scholar 

  36. Okada Y, Uehara S, Shibata M, Koh H, Oue K, Kambe H, et al. Habitual alcohol intake modifies relationship of uric acid to incident chronic kidney disease. Am J Nephrol. 2019;50:55–62.

    Article  CAS  PubMed  Google Scholar 

  37. White SL, Polkinghorne KR, Cass A, Shaw JE, Atkins RC, Chadban SJ. Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. Nephrol Dial Transplant. 2009;24:2464–72.

    Article  PubMed  Google Scholar 

  38. Dunkler D, Dehghan M, Teo KK, Heinze G, Gao P, Kohl M, et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern Med. 2013;173:1682–92.

    CAS  PubMed  Google Scholar 

  39. Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and immediate risk of cardiovascular events: a systematicreview and dose-response meta-analysis. Circulation. 2016;133:979–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Larsson SC, Wallin A, Wolk A. Alcohol consumption and risk of heart failure: meta-analysis of 13 prospective studies. Clin Nutr. 2018;37:1247–51.

    Article  CAS  PubMed  Google Scholar 

  41. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, Vandenburgh M, et al. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med. 1993;329:1829–34.

    Article  CAS  PubMed  Google Scholar 

  42. Camargo CA Jr, Williams PT, Vranizan KM, Albers JJ, Wood PD. The effect of moderate alcohol intake on serum apolipoproteins A-I and A-II. A controlled study. JAMA. 1985;253:2854–7.

    Article  PubMed  Google Scholar 

  43. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58:293–301.

    Article  CAS  PubMed  Google Scholar 

  44. Mukamal KJ, Jadhav PP, D’Agostino RB. Alcohol consumption and hemostatic factors. Analysis of the Framingham offspring cohort. Acc Curr J Rev. 2002;11:1367–73.

    Article  Google Scholar 

  45. Estruch R, Sacanella E, Badia E, Antúnez E, Nicolás JM, Fernández-Solá J, et al. Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis. 2004;175:117–23.

    Article  CAS  PubMed  Google Scholar 

  46. Burchfiel CM, Tracy RE, Chyou PH, Strong JP. Cardiovascular risk factors and hyalinization of renal arterioles at autopsy the Honolulu Heart Program. Arterioscler Thromb Vasc Biol. 1997;17:760–8.

    Article  CAS  PubMed  Google Scholar 

  47. Scott RB, Reddy KS, Husain K, Schlorff EC, Rybak LP, Somani SM. Dose response of ethanol on antioxidant defense system of liver, lung, and kidney in rat. Pathophysiology. 2000;7:25–32.

    Article  CAS  PubMed  Google Scholar 

  48. Femia R, Natali A, L’Abbate A, Ferrannini E. Coronary atherosclerosis and alcohol consumption: angiographic and mortality data. Arterioscler Thromb Vasc Biol. 2006;26:1607–12.

    Article  CAS  PubMed  Google Scholar 

  49. Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA. 2002;287:2559–62.

    Article  CAS  PubMed  Google Scholar 

  50. Joosten MM, Beulens JWJ, Kersten S, Hendriks HFJ. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial. Diabetologia. 2008;51:1375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwo PY, Ramchandani VA, O’Connor S, Amann D, Carr LG, Sandrasegaran K, et al. Gender differences in alcohol metabolism: relationship to liver volume and effect of adjusting for body mass. Gastroenterology. 1998;115:1552–7.

    Article  CAS  PubMed  Google Scholar 

  52. Silbiger SR, Neugarten J. The role of gender in the progression of renal disease. Adv Ren Replace Ther. 2003;10:3–14.

    Article  PubMed  Google Scholar 

  53. Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Ren Physiol. 2001;280:F365–88.

    Article  CAS  Google Scholar 

  54. Emanuele MA, Emanuele N. Alcohol and the male reproductive system. Alcohol Res Health. 2001;25:282–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gavaler JS, Van, Thiel DH. The association between moderate alcoholic beverage consumption and serum estradiol and testosterone levels in normal postmenopausal women: relationship to the literature. Alcohol Clin Exp Res. 1992;16:87–92.

    Article  CAS  PubMed  Google Scholar 

  56. Cook TA, Luczak SE, Shea SH, Ehlers CL, Carr LG, Wall TL. Associations of ALDH2 and ADH1B genotypes with response to alcohol in Asian Americans. J Stud Alcohol. 2005;66:196–204.

    Article  PubMed  Google Scholar 

  57. Duranceaux NCE, Schuckit MA, Luczak SE, Eng MY, Carr LG, Wall TL. Ethnic differences in level of response to alcohol between Chinese Americans and Korean Americans. J Stud Alcohol Drugs. 2008;69:227–34.

    Article  PubMed  Google Scholar 

  58. Osier MV, Pakstis AJ, Soodyall H, Comas D, Goldman D, Odunsi A, et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am J Hum Genet. 2002;71:84–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goedde HW, Agarwal DP, Fritze G, Meiertackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    Article  CAS  PubMed  Google Scholar 

  60. Wall TL, Luczak SE, Susanne HS. Biology, genetics, and environment: underlying factors influencing alcohol metabolism. Alcohol Res. 2016;38:59–68.

    PubMed  PubMed Central  Google Scholar 

  61. Eng MY, Luczak SE, Wall TL. ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol Res Health. 2007;30:22–27.

    PubMed  PubMed Central  Google Scholar 

  62. Erin D, Qiana B, Hasin DS. Alcohol consumption in demographic subpopulations: an epidemiologic overview. Alcohol Res. 2016;38:7–15.

    Google Scholar 

  63. Rodrigo R, Rivera G, Orellana M, Araya J, Bosco C. Rat kidney antioxidant response to long-term exposure to flavonol rich red wine. Life Sci. 2002;71:2881–95.

    Article  CAS  PubMed  Google Scholar 

  64. Faden VB. Trends in initiation of alcohol use in the United States 1975 to 2003. Alcohol Clin Exp Res. 2006;30:1011–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AJE for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 81470498].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LYC (second corresponding author) and PG (first corresponding author). Literature search and data collection: HCY and QTY. Data analysis and interpretation: HCY and HB. Drafting of the original manuscript: HCY. Review and editing: HB and HZX.

Corresponding authors

Correspondence to P. Gu or L. Y. Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H.C., Yu, Q.T., Bai, H. et al. Alcohol intake and the risk of chronic kidney disease: results from a systematic review and dose–response meta-analysis. Eur J Clin Nutr 75, 1555–1567 (2021). https://doi.org/10.1038/s41430-021-00873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00873-x

  • Springer Nature Limited

Navigation