Skip to main content

Advertisement

Log in

Posttransplant blockade of CXCR4 improves leukemia complete remission rates and donor stem cell engraftment without aggravating GVHD

  • Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is a promising therapeutic option for hematological malignancies, but relapse resulting predominantly from residual disease in the bone marrow (BM) remains the major cause of treatment failure. Using immunodeficient mice grafted with laboratory-generated human B-ALL, our previous study suggested that leukemia cells within the BM are resistant to graft-versus-leukemia (GVL) effects and that mobilization with CXCR4 antagonists may dislodge leukemia cells from the BM, enabling them to be destroyed by GVL effects. In this study, we extended this approach to patient-derived xenograft (PDX) and murine T-ALL and AML models to determine its clinical relevance and effects on GVHD and donor hematopoietic engraftment. We found that posttransplant treatment with the CXCR4 antagonist AMD3100 significantly improved the eradication of leukemia cells in the BM in PDX mice grafted with B-ALL cells from multiple patients. AMD3100 also significantly improved GVL effects in murine T-ALL and AML models and promoted donor hematopoietic engraftment in mice following nonmyeloablative allo-HCT. Furthermore, posttransplant treatment with AMD3100 had no detectable deleterious effect related to acute or chronic GVHD. These findings provide important preclinical data supporting the initiation of clinical trials exploring combination therapy with CXCR4 antagonists and allo-HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood. 2013;121:4056–62.

    Article  CAS  PubMed  Google Scholar 

  3. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol. 2014;11:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Estrov Z, Ouspenskaia MV, Felix EA, McClain KL, Lee MS, Harris D, et al. Persistence of self-renewing leukemia cell progenitors during remission in children with B-precursor acute lymphoblastic leukemia. Leukemia. 1994;8:46–52.

    CAS  PubMed  Google Scholar 

  7. Tsirigotis P, Byrne M, Schmid C, Baron F, Ciceri F, Esteve J, et al. Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant. 2016;51:1431–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mercier FE, Ragu C, Scadden DT. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol. 2011;12:49–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14:2519–26.

    Article  CAS  PubMed  Google Scholar 

  10. Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM, et al. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell. 2014;156:590–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nair-Gupta P, Rudnick SI, Luistro L, Smith M, McDaid R, Li Y, et al. Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment. Blood Cancer J. 2020;10:65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16:2927–31.

    Article  CAS  PubMed  Google Scholar 

  14. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A, et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia. 2007;21:1249–57.

    Article  CAS  PubMed  Google Scholar 

  15. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113:6206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martínez-Cuadrón D, Boluda B, Martínez P, Bergua J, Rodríguez-Veiga R, Esteve J, et al. A phase I-II study of plerixafor in combination with fludarabine, idarubicin, cytarabine, and G-CSF (PLERIFLAG regimen) for the treatment of patients with the first early-relapsed or refractory acute myeloid leukemia. Ann Hematol. 2018;97:763–72.

    Article  PubMed  CAS  Google Scholar 

  19. Jin CH, Li Y, Xia J, Li Y, Chen M, Hu Z, et al. CXCR4 blockade improves leukemia eradication by allogeneic lymphocyte infusion. Am J Hematol. 2018;93:786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Wang H, Yu H, Yeap BY, Liang T, Wang G, et al. IFN-γ promotes graft-versus-leukemia effects without directly interacting with leukemia cells in mice after allogeneic hematopoietic cell transplantation. Blood. 2011;118:3721–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr., Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Peng L, Hu T, Wan Y, Ren Y, Zhang J, et al. La-related protein 4B maintains murine MLL-AF9 leukemia stem cell self-renewal by regulating cell cycle progression. Exp Hematol. 2015;43:309–18. e302

    Article  CAS  PubMed  Google Scholar 

  24. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64:8451–5.

    Article  CAS  PubMed  Google Scholar 

  25. Collins N, Han SJ, Enamorado M, Link VM, Huang B, Moseman EA, et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell. 2019;178:1088–101. e1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102:2728–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kang Y, Chen BJ, Deoliveira D, Mito J, Chao NJ. Selective enhancement of donor hematopoietic cell engraftment by the CXCR4 antagonist AMD3100 in a mouse transplantation model. PLoS ONE. 2010;5:e11316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jiang Y, Ulyanova T, Papayannopoulou T. Is the post-transplantation treatment with AMD beneficial? Blood Cells Mol Dis. 2012;49:29–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horowitz M, Schreiber H, Elder A, Heidenreich O, Vormoor J, Toffalori C, et al. Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant. 2018;53:1379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat-Ham JC, et al. CD34+CD38− leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia. 2019;33:1102–12.

    Article  CAS  PubMed  Google Scholar 

  32. Ladikou EE, Chevassut T, Pepper CJ, Pepper AG. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia. Br J Haematol. 2020;189:815–25.

    Article  CAS  PubMed  Google Scholar 

  33. Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2006;109:786–91.

    Article  PubMed  CAS  Google Scholar 

  34. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, et al. CD150high bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22:445–53. e445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kean LS, Sen S, Onabajo O, Singh K, Robertson J, Stempora L, et al. Significant mobilization of both conventional and regulatory T cells with AMD3100. Blood. 2011;118:6580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Q, Li Z, Gao JL, Wan W, Ganesan S, McDermott DH, et al. CXCR4 antagonist AMD3100 redistributes leukocytes from primary immune organs to secondary immune organs, lung, and blood in mice. Eur J Immunol. 2015;45:1855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol. 2000;165:6590–8.

    Article  CAS  PubMed  Google Scholar 

  40. Langenkamp A, Nagata K, Murphy K, Wu L, Lanzavecchia A, Sallusto F. Kinetics and expression patterns of chemokine receptors in human CD4+ T lymphocytes primed by myeloid or plasmacytoid dendritic cells. Eur J Immunol. 2003;33:474–82.

    Article  CAS  PubMed  Google Scholar 

  41. Green MM, Chao N, Chhabra S, Corbet K, Gasparetto C, Horwitz A, et al. Plerixafor (a CXCR4 antagonist) following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery. J Hematol Oncol. 2016;9:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Michelis FV, Hedley DW, Malhotra S, Chow S, Loach D, Gupta V, et al. Mobilization of leukemic cells using plerixafor as part of a myeloablative preparative regimen for patients with acute myelogenous leukemia undergoing allografting: assessment of safety and tolerability. Biol Blood Marrow Transplant. 2019;25:1158–63.

    Article  CAS  PubMed  Google Scholar 

  43. Su L, Hu Z, Yang YG. Role of CXCR4 in the progression and therapy of acute leukaemia. Cell Prolif. 2021;54:e13076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada K, Furusawa S, Saito K, Waga K, Koike T, Arimura H, et al. Concurrent use of granulocyte colony-stimulating factor with low-dose cytosine arabinoside and aclarubicin for previously treated acute myelogenous leukemia: a pilot study. Leukemia. 1995;9:10–14.

    CAS  PubMed  Google Scholar 

  45. Saito K, Nakamura Y, Aoyagi M, Waga K, Yamamoto K, Aoyagi A, et al. Low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (CAG regimen) for previously treated patients with relapsed or primary resistant acute myelogenous leukemia (AML) and previously untreated elderly patients with AML, secondary AML, and refractory anemia with excess blasts in transformation. Int J Hematol. 2000;71:238–44.

    CAS  PubMed  Google Scholar 

  46. Singh V, Jang H, Kim S, Ayash L, Alavi A, Ratanatharathorn V, et al. G-CSF use post peripheral blood stem cell transplant is associated with faster neutrophil engraftment, shorter hospital stay and increased incidence of chronic GVHD. Leuk Lymphoma. 2021;62:446–53.

    Article  CAS  PubMed  Google Scholar 

  47. Smith TJ, Bohlke K, Lyman GH, Carson KR, Crawford J, Cross SJ, et al. Recommendations for the use of WBC growth factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2015;33:3199–212.

    Article  CAS  PubMed  Google Scholar 

  48. Lv M, Zhao XS, Hu Y, Chang YJ, Zhao XY, Kong Y, et al. Monocytic and promyelocytic myeloid-derived suppressor cells may contribute to G-CSF-induced immune tolerance in haplo-identical allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2015;90:E9–e16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Zhan-Wei Sun and Mrs. Guang-Jie Sun for their excellent animal care and Mr. Li-Qun Wang for patient sample collection. This work was supported by grants from the NSFC (81941008, 81870091 and 81900174), the Chinese Ministry of Education (IRT_15R24), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030303), and the Chinese MOST (2017YFA0104402).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LS, ZH, Y-GY; Methodology: LS, M-HF, JZ, S-JG, X-YG, ZH, Y-GY; Investigation: LS, M-HF, JZ, S-JG, X-YG, X-DM, XW; Visualization: LS, X-YG, XW; Funding acquisition: LS, ZH, Y-GY; Project administration: LS, ZH, Y-GY; Supervision: ZH, Y-GY; Writing—original draft: LS, ZH, Y-GY; Writing—review & editing: all authors.

Corresponding authors

Correspondence to Zheng Hu or Yong-Guang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Fang, MH., Zou, J. et al. Posttransplant blockade of CXCR4 improves leukemia complete remission rates and donor stem cell engraftment without aggravating GVHD. Cell Mol Immunol 18, 2541–2553 (2021). https://doi.org/10.1038/s41423-021-00775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00775-9

  • Springer Nature Limited

Keywords

This article is cited by

Navigation