Skip to main content

Advertisement

Log in

Checkpoint inhibition to prevent or treat relapse in allogeneic hematopoietic cell transplantation

  • Review Article
  • Published:
Bone Marrow Transplantation Submit manuscript

Abstract

In the past decades, survival has improved after allogeneic hematopoietic cell transplantation (allo-HCT) due largely to advances in the prevention of graft-vs.-host disease (GVHD) and opportunistic infection. However, few inroads have been made into the problem of leukemia relapse which is the primary reason for failure of allo-HCT. The graft-vs.-leukemia (GVL) response, in which engrafted immunocompetent donor immune cells can eliminate leukemia cells, is acknowledged as the foundation upon which the curative potential of allo-HCT is based. Despite our strongly held faith in its existence, we remain unable to define GVL on a mechanistic level. T cells, in part, mediate GVL though the roles of specific T cell subsets, NK cells, B cells, macrophages remain elusive. A higher frequency of marrow-infiltrating T cells expressing PD-1, CTLA-4, and TIM-3 and other immune checkpoints have been observed in relapsed patients compared to those in remission. Studies have described the association of T cells expressing an exhausted phenotype with response to immune manipulation post-HCT. In light of these observations and the well documented activity of immune checkpoint blockade (CPB) in transplant naïve patients with hematologic malignancies, considerable interest has developed in evaluating strategies incorporating CPB to address relapse post-HCT. While checkpoint inhibitors may be provocative agents to test, they also raise concern for potential induction of GVHD and uncontrollable immune breakthrough events. This review will lay the framework upon which CPB is being utilized post-HCT, describe early clinical results, and lay out future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kekre N, Kim HT, Thanarajasingam G, Armand P, Antin JH, Cutler C, et al. Efficacy of immune suppression tapering in treating relapse after reduced intensity allogeneic stem cell transplantation. Haematologica. 2015;100:1222–7.

    Article  CAS  Google Scholar 

  2. Marina O, Hainz U, Biernacki MA, Zhang W, Cai A, Duke-Cohan JS, et al. Serologic markers of effective tumor immunity against chronic lymphocytic leukemia include nonmutated B-cell antigens. Cancer Res. 2010;70:1344–55. PMCID: PMC2852266.

    Article  CAS  Google Scholar 

  3. Zhang W, Choi J, Zeng W, Rogers SA, Alyea EP, Rheinwald JG, et al. Graft-versus-leukemia antigen CML66 elicits coordinated B-cell and T-cell immunity after donor lymphocyte infusion. Clin Cancer Res. 2010;16:2729–39. PMCID: PMC2872105.

    Article  CAS  Google Scholar 

  4. Bachireddy P, Hainz U, Rooney M, Pozdnyakova O, Aldridge J, Zhang W, et al. Reversal of in situ T cell exhaustion during effective human antileukemia responses to donor lymphocyte infusion. Blood. 2014;123:1412–21.

    Article  CAS  Google Scholar 

  5. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    Article  CAS  Google Scholar 

  6. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.

    Article  Google Scholar 

  7. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34:3733–9.

    Article  CAS  Google Scholar 

  8. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol. 2018;36:942–50.

    Article  CAS  Google Scholar 

  9. Diefenbach CS, Hong F, David KA, Cohen J, Robertson M, Advani R, et al. A phase I study with an expansion cohort of the combination of ipilimumab and nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN Cancer Research Group (E4412 Arms D and E). Blood. 2016;128:1106.

    Article  Google Scholar 

  10. Zinzani PL, Ribrag V, Moskowitz CH, Michot JM, Kuruvilla J, Balakumaran A, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130:267–70.

    Article  CAS  Google Scholar 

  11. Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129:3071–3.

    Article  CAS  Google Scholar 

  12. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/Tcell lymphoma failing l-asparaginase. Blood. 2017;129:2437–42.

    Article  CAS  Google Scholar 

  13. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CRLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2017;28:1280–8.

    Article  Google Scholar 

  14. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, et al. Checkpoint expression by acute myeloid leukemia (AML) and the immune microenvironment suppresses adaptive immunity. Blood. 2017;130:185.

    Google Scholar 

  15. Ravandi F, Daver N, Garcia-Manero G, Benton B, Thompson PA, Borthakur G, et al. Phase 2 study of combination of cytarabine, idarubicin, and nivolumab for initial therapy of patients with newly diagnosed acute myeloid leukemia. Blood. 2017;130:815.

    Google Scholar 

  16. Daver N, Garcia-Manero G, Basu S, Boddu P, Alfayez M, Cortes J, et al. Efficacy, safety, and biomarkers of response to azacitidine nivolumab in relapsed/refractory acute myeloid Leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9:370–83.

    Article  Google Scholar 

  17. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol. 2018;36:1428–39.

    Article  CAS  Google Scholar 

  18. Khouri IF, Fernandez Curbelo I, Turturro F, Jabbour EJ, Milton DR, Bassett RL Jr, et al. Ipilimumab plus lenalidomide after allogeneic and autologous stem cell transplantation for patients with lymphoid malignancies. Clin Cancer Res. 2018;24:1011–8.

    Article  CAS  Google Scholar 

  19. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206.

    Article  CAS  Google Scholar 

  20. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, et al. Blockade of programmed death-1 engagement accelerates graftversus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171:1272–7.

    Article  CAS  Google Scholar 

  21. Deng R, Cassady K, Li X, Yao S, Zhang M, Racine J, et al. B7H1/CD80 interaction augments PD-1–dependent T Cell apoptosis and ameliorates graftversus-host disease. J Immunol. 2015;194:560–74.

    Article  CAS  Google Scholar 

  22. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Sharpe AH, Vallera DA. Opposing roles of CD28:B7 and CTLA-4:B7 pathways in regulating in vivo alloresponses in murine recipients of MHC disparate T cells. J Immunol. 1999;162:6368–77.

    CAS  PubMed  Google Scholar 

  23. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113:1581–8.

    Article  CAS  Google Scholar 

  24. Zhou J, Bashey A, Zhong R, Corringham S, Messer K, Pu M, et al. CTLA-4 blockade following relapse of malignancy after allogeneic stem cell transplantation is associated with T cell activation but not with increased levels of T regulatory cells. Biol Blood Marrow Transpl. 2011;17:682–92.

    Article  Google Scholar 

  25. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53.

    Article  CAS  Google Scholar 

  26. El Cheikh J, Massoud R, Abudalle I, Haffar B, Mahfouz R, Kharfan-Dabaja MA, et al. Nivolumab salvage therapy before or after allogeneic stem cell transplantation in Hodgkin lymphoma. Bone Marrow Transpl. 2017;52:1074–7.

    Article  CAS  Google Scholar 

  27. Singh AK, Porrata LF, Alijitawi O, Lin T, Shune L, Ganguly S, et al. Fatal GVHD induced by PD-1 inhibitor pembrolizumab in a patient with Hodgkin’s lymphoma. Bone Marrow Transpl. 2016;51:1268–70.

    Article  CAS  Google Scholar 

  28. Boekstegers AM, Blaeschke F, Schmid I, Wiebking V, Immler S, Hoffmann F, et al. MRD response in a refractory paediatric T-ALL patient through anti-programmed cell death 1 (PD-1) Ab treatment associated with induction of fatal GVHD. Bone Marrow Transpl. 2017;52:1221–4.

    Article  CAS  Google Scholar 

  29. Haverkos BM, Abbott D, Hamadani M. Armand P4, Flowers ME, Merryman R, et al. PD-1 blockade for relapsed lymphoma post allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood. 2017;130:221–8.

    Article  CAS  Google Scholar 

  30. Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017;129:2471–8.

    Article  CAS  Google Scholar 

  31. Davids MS, Kim HT, Costello CL, Herrera AF, Locke FL, Maegawa RO, et al. A Phase I/Ib study of nivolumab for relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation (alloHCT). Blood. 2018;132:705.

    Article  Google Scholar 

  32. Merryman RW, Kim H, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129:1380–8.

    Article  CAS  Google Scholar 

  33. Herbaux C, Merryman R, Devine S, Armand P, Houot R, Morschhauser F, et al. Recommendations for managing PD-1 blockade in the context of allogeneic HCT in Hodgkin lymphoma: taming a necessary evil. Blood. 2018;132:9–16.

    Article  CAS  Google Scholar 

Download references

Funding

Publication of this supplement was sponsored by Gilead Sciences Europe Ltd, Cell Source, Inc., The Chorafas Institute for Scientific Exchange of the Weizmann Institute of Science, Kiadis Pharma, Miltenyi Biotec, Celgene, Centro Servizi Congressuali, Almog Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Soiffer.

Ethics declarations

Conflict of interest

The author serves on the Supervisory Board for Kiadis Pharma, and has performed consulting for Juno Therapeutics, Gilead, Neovii, Cugene, Astellas, GSK, and Merck.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soiffer, R.J. Checkpoint inhibition to prevent or treat relapse in allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 54 (Suppl 2), 798–802 (2019). https://doi.org/10.1038/s41409-019-0617-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0617-y

  • Springer Nature Limited

This article is cited by

Navigation