Skip to main content

Advertisement

Log in

Identification of an immune gene-associated prognostic signature in patients with bladder cancer

  • Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

A deeper understanding of the interaction between tumor cell and the immune microenvironment in bladder cancer may help select predictive and prognostic biomarkers. The current study aims to construct a prognostic signature for bladder cancer by analysis of molecular characteristics, as well as tumor-immune interactions. RNA-sequencing and clinical information from bladder cancer patients were downloaded from the TCGA database. The single sample Gene Sets Enrichment Analysis (ssGSEA) and Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) were employed to separate the samples into two clusters. Lasso Cox regression was performed to construct an immune gene signature for bladder cancer. The correlation between key target genes of immune checkpoint blockade and the prognostic signature was also analyzed. Dataset from Gene Expression Omnibus (GEO) was retrieved for validation. Two immunophenotypes and immunological characteristics were identified, and a 17-immune gene signature was constructed to provide an independent prognostic signature for bladder cancer. The signature was verified through external validation and correlated with genomic characteristics and clinicopathologic features. Finally, a nomogram was generated from the clinical characteristics and immune signature. Our study reveals a tumor-immune microenvironment signature useful for prognosis in bladder cancer. The results provide information on the potential development of treatment strategies for bladder cancer patients. Prospective studies are warranted to validate the prognostic capability of this model, but these data highlight the role of the microenvironment in the clinical outcome of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Study flowchart.
Fig. 2: Hierarchical clustering.
Fig. 3: DEGs, DEIGs, and PIGs expression.
Fig. 4: Identification of subtype-specific pathways and networks.
Fig. 5: Construction and validation of IGPM-based risk signature.
Fig. 6: Relationship of IGPM-based risk signature with clinical characteristics, kIGs, immune microenvironment and TMB.
Fig. 7: Analysis by proportional hazards model.

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study.

References

  1. Pang KH, Esperto F, Noon AP. party EAUYAU-UCW. Opportunities of next-generation sequencing in non-muscle invasive bladder cancer outcome prediction. Transl Androl Urol. 2017;6:1043–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat Rev. 2017;54:58–67.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang W, Zhu D, Wang C, Zhu Y. An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle-invasive bladder cancer (MIBC). Cancer Med. 2020;9:2774–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67–76.

    Article  CAS  PubMed  Google Scholar 

  5. Song BN, Kim SK, Mun JY, Choi YD, Leem SH, Chu IS. Identification of an immunotherapy-responsive molecular subtype of bladder cancer. EBioMedicine. 2019;50:238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou TC, Sankin AI, Porcelli SA, Perlin DS, Schoenberg MP, Zang X. A review of the PD-1/PD-L1 checkpoint in bladder cancer: From mediator of immune escape to target for treatment. Urol Oncol. 2017;35:14–20.

    Article  CAS  PubMed  Google Scholar 

  7. Lv J, Zhu Y, Ji A, Zhang Q, Liao G. Mining TCGA database for tumor mutation burden and their clinical significance in bladder cancer. Biosci Rep. 2020;40:BSR20194337.

  8. McConkey DJ, Choi W, Shen Y, Lee IL, Porten S, Matin SF, et al. A Prognostic Gene Expression Signature in the Molecular Classification of Chemotherapy-naive Urothelial Cancer is Predictive of Clinical Outcomes from Neoadjuvant Chemotherapy: A Phase 2 Trial of Dose-dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin with Bevacizumab in Urothelial Cancer. Eur Urol. 2016;69:855–62.

    Article  CAS  PubMed  Google Scholar 

  9. Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur Urol. 2019;75:423–32.

    Article  CAS  PubMed  Google Scholar 

  10. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell. 2016;30:27–42.

    Article  CAS  PubMed  Google Scholar 

  11. Kamoun A, de Reynies A, Allory Y, Sjodahl G, Robertson AG, Seiler R, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77:420–33.

    Article  PubMed  Google Scholar 

  12. Liu J, Ma H, Meng L, Liu X, Lv Z, Zhang Y, et al. Construction and External Validation of a Ferroptosis-Related Gene Signature of Predictive Value for the Overall Survival in Bladder Cancer. Front Mol Biosci. 2021;8:675651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Pan L, Lu Q, Huang H, Feng C, Tao Y, et al. A combination of ssGSEA and mass cytometry identifies immune microenvironment in muscle-invasive bladder cancer. J Clin Lab Anal. 2021;35:e23754.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao K, Zhang Q, Zeng T, Zhang J, Song N, Wang Z. Identification and validation of a prognostic immune-related lncRNA signature in bladder cancer. Transl Androl Urol. 2021;10:1229–40.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Zhang L, He S, Guan B, He A, Yang K, et al. Identification of immune-related LncRNA for predicting prognosis and immunotherapeutic response in bladder cancer. Aging (Albany NY). 2020;12:23306–25.

    CAS  PubMed Central  Google Scholar 

  16. Quan J, Zhang W, Yu C, Bai Y, Cui J, Lv J, et al. Bioinformatic identification of prognostic indicators in bladder cancer. Biomark Med. 2020;14: 1243–54.

  17. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  CAS  Google Scholar 

  18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7. Jan 16

    Article  Google Scholar 

  20. Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 2019;10:5416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–D735.

    Article  CAS  PubMed  Google Scholar 

  26. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–D662.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson AG, Groeneveld CS, Jordan B, Lin X, McLaughlin KA, Das A, et al. Identification of Differential Tumor Subtypes of T1 Bladder Cancer. Eur Urol. 2020;78:533–7.

    Article  CAS  PubMed  Google Scholar 

  28. Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang T, et al. Blockade of DC-SIGN(+) Tumor-Associated Macrophages Reactivates Antitumor Immunity and Improves Immunotherapy in Muscle-Invasive Bladder Cancer. Cancer Res. 2020;80:1707–19.

    Article  CAS  PubMed  Google Scholar 

  29. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res. 2018;37:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Z, Jiang Z, Wu N, Zhou G, Wang X. Classification of gastric cancers based on immunogenomic profiling. Transl Oncol. 2021;14:100888.

  31. van Wilpe S, Gerretsen ECF, van der Heijden AG, de Vries IJM, Gerritsen WR, Mehra N. Prognostic and Predictive Value of Tumor-Infiltrating Immune Cells in Urothelial Cancer of the Bladder. Cancers (Basel). 2020;12:2692.

  32. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, et al. Human CD56bright NK Cells: An Update. J Immunol. 2016;196:2923–31.

    Article  CAS  PubMed  Google Scholar 

  33. Mukherjee N, Ji N, Hurez V, Curiel TJ, Montgomery MO, Braun AJ, et al. Intratumoral CD56(bright) natural killer cells are associated with improved survival in bladder cancer. Oncotarget. 2018;9:36492–502.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Takeuchi H, Tanaka M, Tanaka A, Tsunemi A, Yamamoto H. Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncol Lett. 2016;11:3403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105:1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hindupur SV, Schmid SC, Koch JA, Youssef A, Baur EM, Wang D, et al. STAT3/5 Inhibitors Suppress Proliferation in Bladder Cancer and Enhance Oncolytic Adenovirus Therapy. Int J Mol Sci. 2020;21:1106.

  39. Reinert T, Borre M, Christiansen A, Hermann GG, Orntoft TF, Dyrskjot L. Diagnosis of bladder cancer recurrence based on urinary levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 hypermethylation. PLoS One. 2012;7:e46297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guan B, Xing Y, Xiong G, Cao Z, Fang D, Li Y, et al. Predictive value of gene methylation for second recurrence following surgical treatment of first bladder recurrence of a primary upper-tract urothelial carcinoma. Oncol Lett. 2018;15:9397–405.

    PubMed  PubMed Central  Google Scholar 

  41. Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI, et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res. 2010;16:5842–51.

    Article  CAS  PubMed  Google Scholar 

  42. Guo RQ, Xiong GY, Yang KW, Zhang L, He SM, Gong YQ, et al. Detection of urothelial carcinoma, upper tract urothelial carcinoma, bladder carcinoma, and urothelial carcinoma with gross hematuria using selected urine-DNA methylation biomarkers: A prospective, single-center study. Urol Oncol. 2018;36:342 e15–342.e23.

    Article  CAS  Google Scholar 

  43. Hu J, Zhou L, Song Z, Xiong M, Zhang Y, Yang Y, et al. The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets. J Cell Physiol. 2019;13:5931.

  44. Rouas-Freiss N, Moreau P, LeMaoult J, Carosella ED. The dual role of HLA-G in cancer. J Immunol Res. 2014;2014:359748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gan LH, Huang LF, Zhang X, Lin A, Xu DP, Wang Q, et al. Tumor-specific upregulation of human leukocyte antigen-G expression in bladder transitional cell carcinoma. Hum Immunol. 2010;71:899–904.

    Article  CAS  PubMed  Google Scholar 

  46. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J. HLA-G: An Immune Checkpoint Molecule. Adv Immunol. 2015;127:33–144.

    Article  CAS  PubMed  Google Scholar 

  47. Desgrandchamps F, LeMaoult J, Goujon A, Riviere A, Rivero-Juarez A, Djouadou M, et al. Prediction of non-muscle-invasive bladder cancer recurrence by measurement of checkpoint HLAG’s receptor ILT2 on peripheral CD8+ T cells. Oncotarget. 2018;9:33160–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pauty J, Usuba R, Cheng IG, Hespel L, Takahashi H, Kato K, et al. A Vascular Endothelial Growth Factor-Dependent Sprouting Angiogenesis Assay Based on an In Vitro Human Blood Vessel Model for the Study of Anti-Angiogenic Drugs. EBioMedicine. 2018;27:225–36.

    Article  PubMed  Google Scholar 

  49. Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, et al. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol. 2008;39:1835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pignot G, Bieche I, Vacher S, Guet C, Vieillefond A, Debre B, et al. Large-scale real-time reverse transcription-PCR approach of angiogenic pathways in human transitional cell carcinoma of the bladder: identification of VEGFA as a major independent prognostic marker. Eur Urol. 2009;56:678–88.

    Article  CAS  PubMed  Google Scholar 

  51. Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, et al. Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res. 2005;11:4044–55. Jun 1

    Article  CAS  PubMed  Google Scholar 

  52. Fristrup N, Ulhoi BP, Birkenkamp-Demtroder K, Mansilla F, Sanchez-Carbayo M, Segersten U, et al. Cathepsin E, maspin, Plk1, and survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer. Am J Pathol. 2012;180:1824–34.

    Article  CAS  PubMed  Google Scholar 

  53. Kähler CM, Schratzberger P, Kaufmann G, Hochleitner B, Bechter O, Götsch C, et al. Transendothelial migration of leukocytes and signalling mechanisms in response to the neuropeptide secretoneurin. Regul Pept. 2002;105:35–46.

    Article  PubMed  Google Scholar 

  54. Yon L, Guillemot J, Montero-Hadjadje M, Grumolato L, Leprince J, Lefebvre H, et al. Identification of the secretogranin II-derived peptide EM66 in pheochromocytomas as a potential marker for discriminating benign versus malignant tumors. J Clin Endocrinol Metab. 2003;88:2579–85.

    Article  CAS  PubMed  Google Scholar 

  55. Luo Y, Chen L, Zhou Q, Xiong Y, Wang G, Liu X, et al. Identification of a prognostic gene signature based on an immunogenomic landscape analysis of bladder cancer. J Cell Mol Med. 2020;24:13370–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Lu Y, Chen L, Gao T, Yang Q, Zhu C, et al. Th9 cells are subjected to PD-1/PD-L1-mediated inhibition and are capable of promoting CD8 T cell expansion through IL-9R in colorectal cancer. Int Immunopharmacol. 2020;78:106019.

    Article  CAS  PubMed  Google Scholar 

  57. Li P, Hao S, Ye Y, Wei J, Tang Y, Tan L, et al. Identification of an Immune-Related Risk Signature Correlates With Immunophenotype and Predicts Anti-PD-L1 Efficacy of Urothelial Cancer. Front Cell Dev Biol. 2021;9:646982.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saiki Y, Horii A. Multiple functions of S100A10, an important cancer promoter. Pathol Int. 2019;69:629–36.

    Article  CAS  PubMed  Google Scholar 

  59. Sparrow E, Bodman-Smith MD. Granulysin: The attractive side of a natural born killer. Immunol Lett. 2020;217:126–32.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao H, Bo Q, Wang W, Wang R, Li Y, Chen S, et al. CCL17-CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer. J Cell Biochem. 2018;120:1979–89.

  61. Feng J, He W, Song Y, Wang Y, Simpson RJ, Zhang X, et al. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer. PLoS One. 2014;9:e96671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Romero D. TMB is linked with prognosis. Nat Rev Clin Oncol. 2019;16:336.

    Article  PubMed  Google Scholar 

  63. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56.

    Article  CAS  PubMed  Google Scholar 

  64. Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, et al. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group. J Clin Oncol 2016;34:1935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZW, LP, and LZ designed and supervised the study. ZW, LP, ZW, LL, and LZ analyzed the data and wrote the original draft. ZW, LP, and JS edited the draft. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ling Peng.

Ethics declarations

Conflict of interest

JS’ conflicts can be found at https://www.nature.com/onc/editors. None are relevant here. The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhu, L., Li, L. et al. Identification of an immune gene-associated prognostic signature in patients with bladder cancer. Cancer Gene Ther 29, 494–504 (2022). https://doi.org/10.1038/s41417-022-00438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00438-5

  • Springer Nature America, Inc.

This article is cited by

Navigation