Skip to main content
Log in

Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer

  • Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

The over-expression of six-transmembrane epithelial antigen of the prostate 1 (STEAP1) underlies the pathogenesis of a large subset of human cancers. Expressed on the cancer cell surface, STEAP1 is an attractive target for antibody-based therapy or immunotherapy. However, its role in modulating the pathophysiology of colorectal cancer (CRC) remains relatively unexplored. In this study, we first demonstrated that the STEAP1 transcript level was significantly higher in CRC tissues than in normal colonic tissues. Of note, STEAP1 expression negatively correlated with overall survival as determined from a publicly accessible gene expression profile data set. A loss-of-function approach in cultured CRC cell lines revealed that STEAP1 silencing suppressed cell growth and increased reactive oxygen species (ROS) production, followed by apoptosis, through an intrinsic pathway. Mechanistically, the inhibition of STEAP1 was associated with decreased expression of antioxidant molecules regulated by the transcription factor, nuclear erythroid 2-related factor (NRF2), in CRC cells. Taken together, we identified high STEAP1 transcript levels leading to reduced ROS production that prevented apoptosis via the NRF2 pathway in CRC cells as a pathological mechanism in CRC. This study highlights the STEAP1–NRF2 axis as a therapeutic target for CRC and its manipulation as a novel strategy to conquer CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386.

    Article  CAS  Google Scholar 

  2. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.

    Article  Google Scholar 

  3. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–502.

    Article  Google Scholar 

  4. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48:158–67.

    Article  CAS  Google Scholar 

  5. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med. 2017;104:144–64.

    Article  CAS  Google Scholar 

  6. Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22:1321–35.

    Article  CAS  Google Scholar 

  7. Kamihara Y, Takada K, Sato T, Kawano Y, Murase K, Arihara Y, et al. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/beta-catenin signaling in human multiple myeloma. Oncotarget. 2016;7:64330–41.

    Article  Google Scholar 

  8. Arihara Y, Takada K, Kamihara Y, Hayasaka N, Nakamura H, Murase K, et al. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget. 2017;8:65889–99.

    Article  Google Scholar 

  9. Port J, Muthalagu N, Raja M, Ceteci F, Monteverde T, Kruspig B, et al. Colorectal tumors require NUAK1 for protection from oxidative stress. Cancer Discov. 2018;8:632–47.

    Article  CAS  Google Scholar 

  10. Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA. 1999;96:14523–8.

    Article  CAS  Google Scholar 

  11. Challita-Eid PM, Morrison K, Etessami S, An Z, Morrison KJ, Perez-Villar JJ, et al. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res. 2007;67:5798–805.

    Article  CAS  Google Scholar 

  12. Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 is overexpressed in cancers: a promising therapeutic target. Biochem Biophys Res Commun. 2012;429:148–55.

    Article  CAS  Google Scholar 

  13. Ihlaseh-Catalano SM, Drigo SA, de Jesus CM, Domingues MA, Trindade Filho JC, de Camargo JL, et al. STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma. Histopathology. 2013;63:678–85.

    PubMed  Google Scholar 

  14. Gomes IM, Arinto P, Lopes C, Santos CR, Maia CJ. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Urol Oncol. 2014;32:53.e23–9.

    Article  CAS  Google Scholar 

  15. Gomes IM, Rocha SM, Gaspar C, Alvelos MI, Santos CR, Socorro S, et al. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol. 2018;35:40.

    Article  Google Scholar 

  16. Grunewald TG, Diebold I, Esposito I, Plehm S, Hauer K, Thiel U, et al. STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res. 2012;10:52–65.

    Article  CAS  Google Scholar 

  17. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.

    Article  CAS  Google Scholar 

  18. Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22:578–93.

    Article  CAS  Google Scholar 

  19. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13:1713–48.

    Article  CAS  Google Scholar 

  20. Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12:564–71.

    Article  CAS  Google Scholar 

  21. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17.

    Article  CAS  Google Scholar 

  22. Takada K, Zhu D, Bird GH, Sukhdeo K, Zhao JJ, Mani M, et al. Targeted disruption of the BCL9/beta-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med. 2012;4:148ra17.

    Article  Google Scholar 

  23. Matsuoka K, Koreth J, Kim HT, Bascug G, McDonough S, Kawano Y, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med. 2013;5:179ra43.

    Article  Google Scholar 

  24. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  Google Scholar 

  25. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  Google Scholar 

  26. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    Article  CAS  Google Scholar 

  27. Perse M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res Int. 2013;2013:725710.

    Article  Google Scholar 

  28. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yukie Nakamura for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Miyanishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., Takada, K., Arihara, Y. et al. Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther 26, 313–322 (2019). https://doi.org/10.1038/s41417-018-0056-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0056-8

  • Springer Nature America, Inc.

This article is cited by

Navigation