Skip to main content

Advertisement

Log in

Genetics and Genomics

Mutational signature profiling classifies subtypes of clinically different mismatch-repair-deficient tumours with a differential immunogenic response potential

  • Article
  • Published:
British Journal of Cancer Submit manuscript

Abstract

Background

Mismatch repair (MMR) deficiency is the hallmark of tumours from Lynch syndrome (LS), sporadic MLH1 hypermethylated and Lynch-like syndrome (LLS), but there is a lack of understanding of the variability in their mutational profiles based on clinical phenotypes. The aim of this study was to perform a molecular characterisation to identify novel features that can impact tumour behaviour and clinical management.

Methods

We tested 105 MMR-deficient colorectal cancer tumours (25 LS, 35 LLS and 45 sporadic) for global exome microsatellite instability, cancer mutational signatures, mutational spectrum and neoepitope load.

Results

Fifty-three percent of tumours showed high contribution of MMR-deficient mutational signatures, high level of global exome microsatellite instability, loss of MLH1/PMS2 protein expression and included sporadic tumours. Thirty-one percent of tumours showed weaker features of MMR deficiency, 62% lost MSH2/MSH6 expression and included 60% of LS and 44% of LLS tumours. Remarkably, 9% of all tumours lacked global exome microsatellite instability. Lastly, HLA-B07:02 could be triggering the neoantigen presentation in tumours that show the strongest contribution of MMR-deficient tumours.

Conclusions

Next-generation sequencing approaches allow for a granular molecular characterisation of MMR-deficient tumours, which can be essential to properly diagnose and treat patients with these tumours in the setting of personalised medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: De novo mutational signature profile of MMR-deficient tumours.
Fig. 2: Mutational signature exposure by cluster.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are not publicly available yet but will be following NCI data-sharing policies. However, datasets could be available from the corresponding author on reasonable request.

References

  1. Plotz G, Piiper A, Wormek M, Zeuzem S, Raedle J. Analysis of the human MutLalpha.MutSalpha complex. Biochem Biophys Res Commun. 2006;340:852–9.

    Article  CAS  PubMed  Google Scholar 

  2. Xicola RM, Llor X, Pons E, Castells A, Alenda C, Pinol V, et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst. 2007;99:244–52.

    Article  CAS  PubMed  Google Scholar 

  3. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.

    Article  CAS  PubMed  Google Scholar 

  4. Llor X. When should we suspect hereditary colorectal cancer syndrome? Clin Gastroenterol Hepatol. 2012;10:363–7.

    Article  PubMed  Google Scholar 

  5. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–11.

    CAS  PubMed  Google Scholar 

  6. Bessa X, Balleste B, Andreu M, Castells A, Bellosillo B, Balaguer F, et al. A prospective, multicenter, population-based study of BRAF mutational analysis for Lynch syndrome screening. Clin Gastroenterol Hepatol. 2008;6:206–14.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, Zapater P, Castillejo A, Barbera VM, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology. 2013;144:926–32 e1.

    Article  CAS  PubMed  Google Scholar 

  8. Geurts-Giele WR, Leenen CH, Dubbink HJ, Meijssen IC, Post E, Sleddens HF, et al. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol. 2014;234:548–59.

    Article  CAS  PubMed  Google Scholar 

  9. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146:643–6.e8.

    Article  CAS  PubMed  Google Scholar 

  10. Sourrouille I, Coulet F, Lefevre JH, Colas C, Eyries M, Svrcek M, et al. Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer. 2013;12:27–33.

    Article  CAS  PubMed  Google Scholar 

  11. Jansen AM, van Wezel T, van den Akker BE, Ventayol Garcia M, Ruano D, Tops CM, et al. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur J Hum Genet. 2016;24:1089–92.

    Article  CAS  PubMed  Google Scholar 

  12. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van, Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.

    Article  CAS  PubMed  Google Scholar 

  15. Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, et al. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93:6–11.

    Article  CAS  PubMed  Google Scholar 

  16. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9.

    Article  CAS  PubMed  Google Scholar 

  18. Fabrizio DA, George TJ Jr., Dunne RF, Frampton G, Sun J, Gowen K, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol. 2018;9:610–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xicola RM, Gagnon M, Clark JR, Carroll T, Gao W, Fernandez C, et al. Excess of proximal microsatellite-stable colorectal cancer in African Americans from a multiethnic study. Clin Cancer Res. 2014;20:4962–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pico MD, Castillejo A, Murcia O, Giner-Calabuig M, Alustiza M, Sanchez A, et al. Clinical and pathological characterization of Lynch-like syndrome. Clin Gastroenterol Hepatol. 2020;18:368–74.e1.

    Article  PubMed  Google Scholar 

  21. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. 2016;375:1109–12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kautto EA, Bonneville R, Miya J, Yu L, Krook MA, Reeser JW, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget. 2017;8:7452–63.

    Article  PubMed  Google Scholar 

  26. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precision Oncology 2017;1:15.

  27. Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG. MSIseq: Software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep. 2015;5:13321.

    Article  CAS  PubMed  Google Scholar 

  28. Blokzijl F, Janssen R, van Boxtel R, Cuppen E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 2018;10:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Woo J, Winterhoff BJ, Starr TK, Aliferis C, Wang J. De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments. Life Sci Alliance. 2019;2:e201900443.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sakai R, Winand R, Verbeiren T, Moere AV, Aerts J. dendsort: modular leaf ordering methods for dendrogram representations in R. F1000Res. 2014;3:177.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics. 2019;20:264.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 2016;8:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen C, Li Z, Huang H, Suzek BE, Wu CH, UniProt C. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics. 2013;29:2808–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551:517–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43:D405–D412.

    Article  CAS  PubMed  Google Scholar 

  39. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

  40. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Network TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  42. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37:286–95.

    Article  CAS  PubMed  Google Scholar 

  43. Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017;358:234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K, Roumeliotis TI, et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat Cancer. 2021;2:643–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buckley AR, Ideker T, Carter H, Harismendy O, Schork NJ. Exome-wide analysis of bi-allelic alterations identifies a Lynch phenotype in The Cancer Genome Atlas. Genome Med. 2018;10:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xicola RM, Clark JR, Carroll T, Alvikas J, Marwaha P, Regan MR, et al. Implication of DNA repair genes in Lynch-like syndrome. Fam Cancer. 2019;18:331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xavier A, Olsen MF, Lavik LA, Johansen J, Singh AK, Sjursen W, et al. Comprehensive mismatch repair gene panel identifies variants in patients with Lynch-like syndrome. Mol Genet Genom Med. 2019;7:e850.

    Google Scholar 

  48. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364:485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359:582–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results shown here are in part based on data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

This work was supported by grants from the National Cancer Institute (1K01CA204431-01A1 RMX), the Prevent Cancer Foundation (RMX), Colorectal Cancer Alliance’s Chris4Life grant (RMX), pre-doctoral grant from Conselleria d’Educació de la Generalitat Valenciana. VALi+d. EXP ACIF/2010/018, ACIF/2016/002 (MGC), Instituto de Salud Carlos III PI17/01756 (RJ), Asociación Española de Gastroenterología. Beca Tamarite 2017 (RJ) and the Donaldson Foundation (SS and CU).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation (MGC, XL, RMX); Data curation (MGC, SDL, JW, MDP, TF, CU, MH, MCP, IS); Formal analysis (MGC, RMX); Funding acquisition (RJ, JS, XL, RMX); Investigation (MGC, SDL, JW, JG, CA); Project administration (RMX); Resources (TF, CU, SS, MH, MCP, IS, EMS, NAE, JS, MA, MDP, RJ, JR, SPO, AOH); Supervision (RMX); Validation (MGC, SDL); Visualisation (MGC, JW, RMX); Writing—original draft (MGC, XL, RMX); Writing—review and editing (MGC, CU, SS, ES, JG, MC, RJ, NAE, XL, RMX).

Corresponding author

Correspondence to Rosa M. Xicola.

Ethics declarations

Competing interests

SS is a consultant for Myriad Genetics and DC Health Technologies and has rights to an inventor portion of the licensing revenue from PREMM5. The remaining authors declare no competing interests.

Ethics approval and consent to participate

Patients were recruited and consented in their original institutions under projects approved by institutional human research review committees. At Yale University the project was approved by the Biomedical Institutional Review Board. All data were shared in a de-identified manner to unlink any patient’s personal identifiers from their samples. The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giner-Calabuig, M., De Leon, S., Wang, J. et al. Mutational signature profiling classifies subtypes of clinically different mismatch-repair-deficient tumours with a differential immunogenic response potential. Br J Cancer 126, 1595–1603 (2022). https://doi.org/10.1038/s41416-022-01754-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01754-1

  • Springer Nature Limited

Navigation