Skip to main content
Log in

Torque Teno Virus plasma DNA load: a novel prognostic biomarker in CAR-T therapy

  • Article
  • Published:
Bone Marrow Transplantation Submit manuscript

Abstract

Torque Teno Virus (TTV) is a single-stranded circular DNA virus which has been identified as a surrogate marker of immune competence in transplantation. In this study we investigated the dynamics of plasma TTV DNAemia in 79 adult patients undergoing chimeric antigen receptor T-cell (CAR-T) therapy for relapsed or refractory large B-cell lymphoma, also evaluating the impact of TTV on immunotoxicities, response and survival outcomes. After lymphodepleting therapy, TTV DNA load was found to decrease slightly until reaching nadir around day 10, after which it increased steadily until reaching maximum load around day 90. TTV DNA load < 4.05 log10 copies/ml at immune effector cell-associated neurotoxicity syndrome (ICANS) onset identified patients at risk of progressing to severe forms of ICANS (OR 16.68, P = 0.048). Finally, patients who experienced falling or stable TTV DNA load between lymphodepletion and CAR-T infusion had better progression-free survival than those with ascending TTV DNA load (HR 0.31, P = 0.006). These findings suggest that TTV monitoring could serve as a surrogate marker of immune competence, enabling predictions of CAR-T efficacy and toxicity. This could pave the way for the development of TTV-guided therapeutic strategies that modulate clinical patient management based on plasma TTV load, similar to suggested strategies in solid organ transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Dynamics of TTV DNAemia in plasma over the study period.
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article and its Supplementary material.

References

  1. Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: limitations and optimization strategies. Front Immunol. 2022;13:1019115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel U, Abernathy J, Savani BN, Oluwole O, Sengsayadeth S, Dholaria B. CAR T cell therapy in solid tumors: a review of current clinical trials. eJHaem. 2022;3:24–31.

    Article  PubMed  Google Scholar 

  3. Seif M, Einsele H, Löffler J. CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front Immunol. 2019;10:2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28:2124–32.

    Article  CAS  PubMed  Google Scholar 

  5. Chow VA, Gopal AK, Maloney DG, Turtle CJ, Smith SD, Ujjani CS, et al. Outcomes of patients with large B-cell lymphomas and progressive disease following CD19-specific CAR T-cell therapy. Am J Hematol. 2019;94:E209–13.

  6. Hernani R, Benzaquén A, Solano C. Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev. 2022;111:102479.

    Article  CAS  PubMed  Google Scholar 

  7. Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241:92–7.

    Article  CAS  PubMed  Google Scholar 

  8. Redondo N, Navarro D, Aguado JM, Fernández-Ruiz M. Viruses, friends, and foes: the case of Torque Teno Virus and the net state of immunosuppression. Transpl Infect Dis. 2022;24:e13778.

    Article  CAS  PubMed  Google Scholar 

  9. Gerner P, Oettinger R, Gerner W, Falbrede J, Wirth S. Mother-to-infant transmission of TT virus: prevalence, extent and mechanism of vertical transmission. Pediatr Infect Dis J. 2000;19:1074–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ninomiya M, Takahashi M, Nishizawa T, Shimosegawa T, Okamoto H. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J Clin Microbiol. 2008;46:507–14.

    Article  PubMed  Google Scholar 

  11. Focosi D, Macera L, Boggi U, Nelli LC, Maggi F. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J Gen Virol. 2015;96:115–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kosulin K, Kernbichler S, Pichler H, Lawitschka A, Geyeregger R, Witt V, et al. Post-transplant replication of torque teno virus in granulocytes. Front Microbiol. 2018;9:2956.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Strassl R, Schiemann M, Doberer K, Görzer I, Puchhammer-Stöckl E, Eskandary F, et al. Quantification of torque teno virus viremia as a prospective biomarker for infectious disease in kidney allograft recipients. J Infect Dis. 2018;218:1191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maggi F, Focosi D, Statzu M, Bianco G, Costa C, Macera L, et al. Early post-transplant torquetenovirus viremia predicts cytomegalovirus reactivations in solid organ transplant recipients. Sci Rep. 2018;8:15490.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Ruiz M, Albert E, Giménez E, Ruiz-Merlo T, Parra P, López-Medrano F, et al. Monitoring of alphatorquevirus DNA levels for the prediction of immunosuppression-related complications after kidney transplantation. Am J Transpl. 2019;19:1139–49.

    Article  Google Scholar 

  16. Doberer K, Schiemann M, Strassl R, Haupenthal F, Dermuth F, Görzer I, et al. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients—a prospective observational trial. Am J Transpl. 2020;20:2081–90.

    Article  CAS  Google Scholar 

  17. van Rijn AL, Wunderink HF, Sidorov IA, de Brouwer CS, Kroes AC, Putter H, et al. Torque teno virus loads after kidney transplantation predict allograft rejection but not viral infection. J Clin Virol. 2021;140:104871.

    Article  PubMed  Google Scholar 

  18. Schiemann M, Puchhammer-Stöckl E, Eskandary F, Kohlbeck P, Rasoul-Rockenschaub S, Heilos A, et al. Torque teno virus load-inverse association with antibody-mediated rejection after kidney transplantation. Transplantation. 2017;101:360–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Albert E, Solano C, Giménez E, Focosi D, Pérez A, Macera L, et al. The kinetics of torque teno virus plasma DNA load shortly after engraftment predicts the risk of high-level CMV DNAemia in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transpl. 2018;53:180–7.

    Article  CAS  Google Scholar 

  20. Albert E, Solano C, Giménez E, Focosi D, Pérez A, Macera L, et al. Kinetics of Alphatorquevirus plasma DNAemia at late times after allogeneic hematopoietic stem cell transplantation. Med Microbiol Immunol. 2019;208:253–8.

    Article  PubMed  Google Scholar 

  21. Mouton W, Conrad A, Bal A, Boccard M, Malcus C, Ducastelle-Lepretre S, et al. Torque teno virus viral load as a marker of immune function in allogeneic haematopoietic stem cell transplantation recipients. Viruses. 2020;12:1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pradier A, Masouridi-Levrat S, Bosshard C, Dantin C, Vu D-L, Zanella M-C, et al. Torque teno virus as a potential biomarker for complications and survival after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greenbaum U, Strati P, Saliba RM, Torres J, Rondon G, Nieto Y, et al. CRP and ferritin in addition to the EASIX score predict CAR-T–related toxicity. Blood Adv [Internet]. 2021;5:2799–806. Available from: https://doi.org/10.1182/bloodadvances.2021004575.

    Article  CAS  PubMed  Google Scholar 

  24. Rejeski K, Perez A, Sesques P, Hoster E, Berger CS, Jentzsch L, et al. CAR-HEMATOTOX: a model for CAR T-cell related hematological toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albert E, Solano C, Pascual T, Torres I, Macera L, Focosi D, et al. Dynamics of Torque Teno virus plasma DNAemia in allogeneic stem cell transplant recipients. J Clin Virol. 2017;94:22–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transpl. 2019;25:625–38.

    Article  CAS  Google Scholar 

  27. https://www.sanidad.gob.es/profesionales/farmacia/pdf/20190508_Protocolo_manejo_efectos_adversos_CAR_T.pdf.

  28. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maggi F, Focosi D, Albani M, Lanini L, Vatteroni ML, Petrini M, et al. Role of hematopoietic cells in the maintenance of chronic human torquetenovirus plasma viremia. J Virol. 2010;84:6891–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iacoboni G, Villacampa G, Martinez-Cibrian N, Bailén R, Lopez Corral L, Sanchez JM, et al. Real-world evidence of tisagenlecleucel for the treatment of relapsed or refractory large B-cell lymphoma. Cancer Med. 2021;10:3214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon M, Iacoboni G, Reguera JL, Corral LL, Morales RH, Ortiz-Maldonado V, et al. Axicabtagene ciloleucel compared to tisagenlecleucel for the treatment of aggressive B-cell lymphoma. Haematologica. 2023;108:110–21.

    Article  CAS  PubMed  Google Scholar 

  32. Landsburg DJ, Frigault M, Heim M, Foley SR, Hill BT, Ho CM, et al. Real-world outcomes for patients with relapsed or refractory (R/R) aggressive B-cell non-hodgkin’s lymphoma (aBNHL) treated with commercial tisagenlecleucel: subgroup analyses from the Center for International Blood and Marrow Transplant Research (CIBMTR). Blood [Internet]. 2022;140:1584–7. Available from: https://doi.org/10.1182/blood-2022-158822.

  33. Jacobson CA, Locke FL, Ma L, Asubonteng J, Hu Z-H, Siddiqi T, et al. Real-world evidence of axicabtagene ciloleucel for the treatment of large B-cell lymphoma in the United States. Transplant Cell Ther. 2022;

  34. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol [Internet]. 2022;22:85–96. Available from: https://doi.org/10.1038/s41577-021-00547-6.

    Article  CAS  PubMed  Google Scholar 

  35. Gazeau N, Barba P, Iacoboni G, Kwon M, Bailen R, Reguera JL, et al. Safety and efficacy of two anakinra dose regimens for refractory CRS or icans after CAR T-cell therapy. Blood [Internet]. 2021;138:2816. Available from: https://doi.org/10.1182/blood-2021-147454.

    Article  Google Scholar 

  36. Zurko JC, Johnson BD, Aschenbrenner E, Fenske TS, Hamadani M, Hari P, et al. Use of early intrathecal therapy to manage high-grade immune effector cell-associated neurotoxicity syndrome. JAMA Oncol. 2022;8:773–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Strati P, Nastoupil LJ, Westin J, Fayad LE, Ahmed S, Fowler NH, et al. Clinical and radiologic correlates of neurotoxicity after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4:3943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjee R, Fakhri B, Shah N. Toci or not toci: innovations in the diagnosis, prevention, and early management of cytokine release syndrome. Leuk Lymphoma. 2021;62:2600–11.

    Article  CAS  PubMed  Google Scholar 

  39. Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor t-cell therapy in large B-cell lymphoma. Blood. 2021;137:3272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akalin I, Perna SK, De Angelis B, Okur FV. Effects of Chimeric Antigen Receptor (CAR) expression on regulatory T cells. Mol Ther [Internet]. 2009;17:S25. Available from: https://doi.org/10.1016/S1525-0016(16)38419-2.

    Article  Google Scholar 

  41. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  42. Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemoine J, Morin F, Di Blasi R, Vercellino L, Cuffel A, Benlachgar N, et al. Lenalidomide exposure at time of CAR T-cells expansion enhances response of refractory/relapsed aggressive large B-cell lymphomas. Blood [Internet]. 2021;138:1433. Available from: https://doi.org/10.1182/blood-2021-151109.

    Article  Google Scholar 

  44. Wang C, Shi F, Liu Y, Zhang Y, Dong L, Li X, et al. Anti-PD-1 antibodies as a salvage therapy for patients with diffuse large B cell lymphoma who progressed/relapsed after CART19/20 therapy. J Hematol Oncol. 2021;14:106. Erratum in: J Hematol Oncol. 2021;14:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Institut Paoli-Calmettes (Marseille, France) was also included as a collaborating center. The study was classified as a clinical trial in France (NCT04822974). Unfortunately, the implementation of the study in France was prevented by the COVID-19 pandemic. All authors would like to express their gratitude to these colleagues in Marseille, especially Prof. Didier Blaise and Dr. Raynier Devillier.

Author information

Authors and Affiliations

Authors

Contributions

AB, EG, and RH conceived the study and interpreted the data; AB and RH wrote the paper; AB, RH and EA performed the statistical analyses; EG, GI, MG, EA, CC, AB, AP, CSA, MASS, PC, JLP, FB, JM, JCHB, AF, BF, MV, PA, DC, MJT, JS, PB, DN, and CS reviewed the paper and contributed to the final draft.

Corresponding author

Correspondence to Pere Barba.

Ethics declarations

Competing interests

A Gilead grant (Beca FEHH-GILEAD para Formación en Investigación en Terapia Celular en un centro internacional Convocatoria 2019) was awarded to AB. RH was the principal investigator of the grant-associated study. The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzaquén, A., Giménez, E., Iacoboni, G. et al. Torque Teno Virus plasma DNA load: a novel prognostic biomarker in CAR-T therapy. Bone Marrow Transplant 59, 93–100 (2024). https://doi.org/10.1038/s41409-023-02114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02114-0

  • Springer Nature Limited

Navigation