Skip to main content

An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond!

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient’s system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murati, A., Brecqueville, M., Devillier, R., Mozziconacci, M.-J., Gelsi-Boyer, V., & Birnbaum, D. (Jul. 2012). Myeloid malignancies: Mutations, models and management. BMC Cancer, 12, 304.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tallman, M. S., et al. (Jun. 2019). Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. JNCCN, 17(6), 721–749.

    CAS  Google Scholar 

  3. Herold, T., et al. (Dec. 2020). Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia, 34(12), 3161–3172.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baudard, M., et al. (Oct. 1999). Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia, 13(10), 1481–1490.

    CAS  PubMed  Google Scholar 

  5. Chen, K. T. J., Gilabert-Oriol, R., Bally, M. B., & Leung, A. W. Y. (Jun. 2019). Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia. Pharm. Res, 36(9), 125.

    PubMed  PubMed Central  Google Scholar 

  6. Tamamyan, G., et al. (Feb. 2017). Frontline treatment of acute myeloid leukemia in adults. Critical Reviews in Oncology/Hematology, 110, 20–34.

    PubMed  Google Scholar 

  7. Knipp, S., et al. (Jul. 2007). Intensive chemotherapy is not recommended for patients aged >60 years who have myelodysplastic syndromes or acute myeloid leukemia with high-risk karyotypes. Cancer, 110(2), 345–352.

    CAS  PubMed  Google Scholar 

  8. Zeidan, A. M., et al. (Nov. 2019). Clinical Outcomes of Older Patients (pts) with Acute Myeloid Leukemia (AML) receiving Hypomethylating Agents (HMAs): A Large Population-Based Study in the United States. Blood, 134(Supplement_1), 646–646.

    Google Scholar 

  9. Dickinson, A. M., et al. (2017). Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Frontiers in Immunology, 8, 496.

    PubMed  PubMed Central  Google Scholar 

  10. Mardiana, S., & Gill, S. (May 2020). CAR T cells for acute myeloid leukemia: State of the art and future directions. Front. Oncol., 10.

    Google Scholar 

  11. Barrett, A. J., & Battiwalla, M. (Aug. 2010). Relapse after allogeneic stem cell transplantation. Expert Review of Hematology, 3(4), 429–441.

    PubMed  PubMed Central  Google Scholar 

  12. Masarova, L., Kantarjian, H., Ravandi, F., Sharma, P., Garcia-Manero, G., & Daver, N. (2018). Update on immunotherapy in AML and MDS: Monoclonal antibodies and checkpoint inhibitors paving the road for clinical practice. Adv. Exp. Med. Biol., 995, 97–116.

    PubMed  Google Scholar 

  13. Daver, N. (Mar. 2020). A bispecific approach to improving CAR T cells in AML. Blood, 135(10), 703–704.

    CAS  PubMed  Google Scholar 

  14. Einsele, H., et al. (Jun. 2020). Immune-based therapies for hematological malignancies: An update by the EHA SWG on immunotherapy of hematological malignancies. HemaSphere, 4(4).

    Google Scholar 

  15. Xu-Monette, Z. Y., Zhou, J., & Young, K. H. (Jan. 2018). PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood, 131(1), 68–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu, B., Jacobs, R., & Ghosh, N. (Dec. 2018). Checkpoint inhibitors Hodgkin lymphoma and non-Hodgkin lymphoma. Current Hematologic Malignancy Reports, 13(6), 543–554.

    PubMed  Google Scholar 

  17. von Stackelberg, A., et al. (Dec. 2016). Phase I/Phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 34(36), 4381–4389.

    Google Scholar 

  18. Maude, S. L., et al. (Oct. 2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 371(16), 1507–1517.

    PubMed  PubMed Central  Google Scholar 

  19. Chikuma, S. (2017). CTLA-4, an essential immune-checkpoint for T-cell activation. Current Topics in Microbiology and Immunology, 410, 99–126.

    PubMed  Google Scholar 

  20. Rudd, C. E., Taylor, A., & Schneider, H. (May 2009). CD28 and CTLA-4 coreceptor expression and signal transduction. Immunological Reviews, 229(1), 12–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Phan, G. Q., et al. (Jul. 2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8372–8377.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hodi, F. S., et al. (Apr. 2003). Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4712–4717.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishimura, H., Nose, M., Hiai, H., Minato, N., & Honjo, T. (Aug. 1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 11(2), 141–151.

    CAS  PubMed  Google Scholar 

  24. Freeman, G. J., Wherry, E. J., Ahmed, R., & Sharpe, A. H. (Oct. 2006). Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. The Journal of Experimental Medicine, 203(10), 2223–2227.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Latchman, Y., et al. (Mar. 2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2(3), 261–268.

    CAS  PubMed  Google Scholar 

  26. Patsoukis, N., Brown, J., Petkova, V., Liu, F., Li, L., & Boussiotis, V. A. (Jun. 2012). Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal, 5(230), ra46.

    PubMed  PubMed Central  Google Scholar 

  27. Carter, L., et al. (Mar. 2002). PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. European Journal of Immunology, 32(3), 634–643.

    CAS  PubMed  Google Scholar 

  28. Nurieva, R., et al. (Jun. 2006). T-cell tolerance or function is determined by combinatorial costimulatory signals. The EMBO Journal, 25(11), 2623–2633.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. de Mello, R. A., Veloso, A. F., Esrom Catarina, P., Nadine, S., & Antoniou, G. (Dec. 2016). Potential role of immunotherapy in advanced non-small-cell lung cancer. OncoTargets Ther., 10, 21–30.

    Google Scholar 

  30. Kourie, H. R., Awada, G., & Awada, A. H. (May 2016). Learning from the ‘tsunami’ of immune checkpoint inhibitors in 2015. Critical Reviews in Oncology/Hematology, 101, 213–220.

    PubMed  Google Scholar 

  31. Kourie, H. R., Awada, G., & Awada, A. (Jun. 2017). The second wave of immune checkpoint inhibitor tsunami: Advance, challenges and perspectives. Immunotherapy, 9(8), 647–657.

    CAS  PubMed  Google Scholar 

  32. Chalmers, Z. R., et al. (Apr. 2017). Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 9(1), 34.

    PubMed  PubMed Central  Google Scholar 

  33. Lawrence, M. S., et al. (Jul. 2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499(7457), 214–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ansell, S. M., et al. (Jan. 2015). PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. The New England Journal of Medicine, 372(4), 311–319.

    PubMed  Google Scholar 

  35. Berger, R., et al. (May 2008). Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., 14(10), 3044–3051.

    CAS  Google Scholar 

  36. Westin, J. R., et al. (Jan. 2014). Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: A single group, open-label, phase 2 trial. The Lancet Oncology, 15(1), 69–77.

    CAS  PubMed  Google Scholar 

  37. Fenaux, P., et al. (Feb. 2010). Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(4), 562–569.

    CAS  Google Scholar 

  38. Malik, P., & Cashen, A. F. (Feb. 2014). Decitabine in the treatment of acute myeloid leukemia in elderly patients. Cancer Management and Research, 6, 53–61.

    PubMed  PubMed Central  Google Scholar 

  39. Daver, N., et al. (May 2018). Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia, 32(5), 1094–1105.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, H., et al. (Jun. 2014). Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia, 28(6), 1280–1288.

    CAS  PubMed  Google Scholar 

  41. Wrangle, J., et al. (Nov. 2013). Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncotarget, 4(11), 2067–2079.

    PubMed  PubMed Central  Google Scholar 

  42. Daver, N., et al. (Mar. 2019). Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: A non-randomized, open-label, phase 2 study. Cancer Discovery, 9(3), 370–383.

    CAS  PubMed  Google Scholar 

  43. Gojo, I., et al. (Nov. 2019). Multi-center phase 2 study of Pembroluzimab (Pembro) and Azacitidine (AZA) in patients with relapsed/refractory Acute Myeloid Leukemia (AML) and in newly diagnosed (≥65 years) AML patients. Blood, 134(Supplement_1), 832–832.

    Google Scholar 

  44. Kroemer, G., Galluzzi, L., Kepp, O., & Zitvogel, L. (2013). Immunogenic cell death in cancer therapy. Annual Review of Immunology, 31, 51–72.

    CAS  PubMed  Google Scholar 

  45. Zitvogel, L., Galluzzi, L., Smyth, M. J., & Kroemer, G. (Jul. 2013). Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity, 39(1), 74–88.

    CAS  PubMed  Google Scholar 

  46. Galluzzi, L., Senovilla, L., Zitvogel, L., & Kroemer, G. (Feb. 2012). The secret ally: Immunostimulation by anticancer drugs. Nature Reviews. Drug Discovery, 11(3), 215–233.

    CAS  PubMed  Google Scholar 

  47. Zitvogel, L., Kepp, O., & Kroemer, G. (Mar. 2011). Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Reviews. Clinical Oncology, 8(3), 151–160.

    CAS  PubMed  Google Scholar 

  48. Blank, C., et al. (Feb. 2004). PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Research, 64(3), 1140–1145.

    CAS  PubMed  Google Scholar 

  49. Chen, D. S., Irving, B. A., & Hodi, F. S. (Dec. 2012). Molecular pathways: Next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., 18(24), 6580–6587.

    CAS  Google Scholar 

  50. Stahl, M., & Goldberg, A. D. (Mar. 2019). Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr. Oncol. Rep, 21(4), 37.

    PubMed  Google Scholar 

  51. Fucikova, J., et al. (Jul. 2011). Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Research, 71(14), 4821–4833.

    CAS  PubMed  Google Scholar 

  52. Ravandi, F., et al. (Sep. 2019). Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol., 6(9), e480–e488.

    PubMed  PubMed Central  Google Scholar 

  53. Zeidner, J. F., et al. (Nov. 2019). Final clinical results of a phase II study of high dose cytarabine followed by pembrolizumab in relapsed/refractory AML. Blood, 134(Supplement_1), 831–831.

    Google Scholar 

  54. Zhong, R. K., Loken, M., Lane, T. A., & Ball, E. D. (2006). CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy, 8(1), 3–12.

    CAS  PubMed  Google Scholar 

  55. Davids, M. S., et al. (Jul. 2016). Ipilimumab for patients with relapse after allogeneic transplantation. The New England Journal of Medicine, 375(2), 143–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schnorfeil, F. M., et al. (Jul. 2015). T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J. Hematol. Oncol.J Hematol Oncol, 8, 93.

    Google Scholar 

  57. Salih, H. R., et al. (Jul. 2006). The role of leukemia-derived B7-H1 (PD-L1) in tumor-T-cell interactions in humans. Experimental Hematology, 34(7), 888–894.

    CAS  PubMed  Google Scholar 

  58. Zhang, L., Gajewski, T. F., & Kline, J. (Aug. 2009). PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood, 114(8), 1545–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, X., Liu, S., Wang, L., Zhang, W., Ji, Y., & Ma, X. (May 2008). Clinical significance of B7-H1 (PD-L1) expression in human acute leukemia. Cancer Biology & Therapy, 7(5), 622–627.

    CAS  Google Scholar 

  60. Bashey, A., et al. (Feb. 2009). CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood, 113(7), 1581–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Merryman, R. W., et al. (Mar. 2017). Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood, 129(10), 1380–1388.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oran, B., et al. (May 2020). Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer, 126(10), 2193–2205.

    CAS  PubMed  Google Scholar 

  63. O’Reilly, R. J., Koehne, G., Hasan, A. N., Doubrovina, E., & Prockop, S. (Jun. 2015). T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplantation, 50(Suppl 2), S43–S50.

    PubMed  PubMed Central  Google Scholar 

  64. Zeidan, A. M., et al. (Nov. 2019). Efficacy and safety of azacitidine (AZA) in combination with the anti-PD-L1 Durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for Intensive Chemotherapy (IC) and Pts with Higher-Risk Myelodysplastic Syndromes (HR-MDS): Results from a Large, International, Randomized Phase 2 Study. Blood, 134(Supplement_1), 829–829.

    Google Scholar 

  65. Lichtenegger, F. S., et al. (2018). Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Frontiers in Immunology, 9, 385. https://doi.org/10.3389/fimmu.2018.00385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kikushige, Y., et al. (Dec. 2010). TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell, 7(6), 708–717.

    CAS  PubMed  Google Scholar 

  67. Dama, P., Tang, M., Fulton, N., Kline, J. P., & Liu, H. (May 2018). Profiling the immune checkpoint pathway in acute myeloid leukemia. J. Clin. Oncol, 36(15_suppl), 7015–7015.

    Google Scholar 

  68. Deng, M., et al. (Oct. 2018). LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 562(7728), Art. no. 7728. https://doi.org/10.1038/s41586-018-0615-z

    Article  CAS  Google Scholar 

  69. Choi, Y., Shi, Y., Haymaker, C. L., Naing, A., Ciliberto, G., & Hajjar, J. (Oct. 2020). T-cell agonists in cancer immunotherapy. J. Immunother. Cancer, 8(2). https://doi.org/10.1136/jitc-2020-000966

  70. Fujii, T., Naing, A., Rolfo, C., & Hajjar, J. (Oct. 2018). Biomarkers of response to immune checkpoint blockade in cancer treatment. Critical Reviews in Oncology/Hematology, 130, 108–120.

    PubMed  Google Scholar 

  71. Naing, A., et al. (Dec. 2020). Strategies for improving the management of immune-related adverse events. J. Immunother. Cancer, 8(2).

    Google Scholar 

  72. Kim, S. T., et al. (2020). Distinct immunophenotypes of T cells in bronchoalveolar lavage fluid from leukemia patients with immune checkpoint inhibitors-related pulmonary complications. Frontiers in Immunology, 11, 590494.

    CAS  PubMed  Google Scholar 

  73. Brown, E. J., & Frazier, W. A. (Mar. 2001). Integrin-associated protein (CD47) and its ligands. Trends in Cell Biology, 11(3), 130–135.

    CAS  PubMed  Google Scholar 

  74. Barclay, A. N., & Brown, M. H. (Jun. 2006). The SIRP family of receptors and immune regulation. Nature Reviews. Immunology, 6(6), 457–464.

    CAS  PubMed  Google Scholar 

  75. Okazawa, H., et al. (Feb. 2005). Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. Baltim. Md 1950, 174(4), 2004–2011.

    CAS  Google Scholar 

  76. Chao, M. P., Weissman, I. L., & Majeti, R. (Apr. 2012). The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Current Opinion in Immunology, 24(2), 225–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jaiswal, S., et al. (Jul. 2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138(2), 271–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chao, M. P., et al. (Dec. 2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med, 2(63), 63ra94.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chao, M. P., et al. (Jan. 2020). Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front. Oncol, 9.

    Google Scholar 

  80. Liu, J., et al. (Sep. 2015). Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE, 10(9).

    Google Scholar 

  81. Sallman, D. et al., The first-in-class anti-Cd47 antibody Hu5f9-G4 is active and well tolerated alone or in combination with azacitidine in Aml and Mds patients: Initial phase 1b results, https://library.ehaweb.org/eha/2019/24th/267461, Accessed: Apr 08, 2021.

  82. Obeid, M., et al. (Oct. 2007). Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death and Differentiation, 14(10), 1848–1850.

    CAS  PubMed  Google Scholar 

  83. Kathawala, R. J., et al. (Jul. 2016). Abstract 4001: The anti-CD47 antibody Hu5F9-G4 activates macrophages and inhibits ovarian cancer xenografts, alone and in combination with chemotherapy or immunotherapy. Cancer Research, 76(14 Supplement), 4001–4001.

    Google Scholar 

  84. Feng, D., et al. (Nov. 2018). Combination Treatment with 5F9 and Azacitidine Enhances Phagocytic Elimination of Acute Myeloid Leukemia. Blood, 132(Supplement 1), 2729.

    Google Scholar 

  85. Sallman, D., The first-in-class anti-CD47 antibody magrolimab combined with azacitidine is well-tolerated and effective in AML patients: Phase 1b results. Presented at the 62nd ASH Annual Meeting and Exposition, Dec. 2020, Accessed: Feb. 13, 2021. [Online]. Available: https://ash.confex.com/ash/2020/webprogram/Paper134728.html.

  86. Chao, M. P., et al. (Sep. 2010). Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell, 142(5), 699–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tseng, D., et al. (Jul. 2013). Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proceedings of the National Academy of Sciences, 110(27), 11103–11108.

    CAS  Google Scholar 

  88. Liu, B., et al. (Mar. 2018). Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses. MAbs, 10(2), 315–324.

    CAS  PubMed  Google Scholar 

  89. Gordon, S. R., et al. (May 2017). PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 545(7655), 495–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sockolosky, J. T., et al. (May 2016). Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proceedings of the National Academy of Sciences of the United States of America, 113(19), E2646–E2654.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Subklewe, M., von Bergwelt-Baildon, M., & Humpe, A. (Feb. 2019). Chimeric antigen receptor T cells: A race to revolutionize cancer therapy. Transfus. Med. Hemotherapy, 46(1), 15–24.

    Google Scholar 

  92. Rosenberg, S. A., & Restifo, N. P. (Apr. 2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348(6230), 62–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brocker, T., & Karjalainen, K. (May 1995). Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. The Journal of Experimental Medicine, 181(5), 1653–1659.

    CAS  PubMed  Google Scholar 

  94. Gong, M. C., Latouche, J. B., Krause, A., Heston, W. D., Bander, N. H., & Sadelain, M. (Jun. 1999). Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia N. Y. N, 1(2), 123–127.

    CAS  Google Scholar 

  95. Krause, A., Guo, H. F., Latouche, J. B., Tan, C., Cheung, N. K., & Sadelain, M. (Aug. 1998). Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. The Journal of Experimental Medicine, 188(4), 619–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (Aug. 2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine, 365(8), 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Brentjens, R. J., & Curran, K. J. (2012). Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematol. Am. Soc. Hematol. Educ. Program, 2012, 143–151.

    Google Scholar 

  98. Wang, L.-C. S., et al. (Feb. 2014). Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunology Research, 2(2), 154–166.

    CAS  PubMed  Google Scholar 

  99. Scarfò, I., & Maus, M. V. (2017). Current approaches to increase CAR T cell potency in solid tumors: Targeting the tumor microenvironment. Journal for Immunotherapy of Cancer, 5, 28.

    PubMed  PubMed Central  Google Scholar 

  100. Grupp, S. A., et al. (Apr. 2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 368(16), 1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maude, S. L., et al. (Feb. 2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. The New England Journal of Medicine, 378(5), 439–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, S., et al. (Sep. 1997). Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. International Journal of Cancer, 73(1), 50–56.

    CAS  PubMed  Google Scholar 

  103. Sakamoto, J., et al. (Mar. 1986). Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines. Cancer Research, 46(3), 1553–1561.

    CAS  PubMed  Google Scholar 

  104. Kobayashi, K., et al. (Jun. 1993). Lewis blood group-related antigen expression in normal gastric epithelium, intestinal metaplasia, gastric adenoma, and gastric carcinoma. The American Journal of Gastroenterology, 88(6), 919–924.

    CAS  PubMed  Google Scholar 

  105. Ritchie, D. S., et al. (Nov. 2013). Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Molecular Therapy, 21(11), 2122–2129.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (Apr. 2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. J. Am. Soc. Gene Ther., 18(4), 843–851.

    CAS  Google Scholar 

  107. Kalos, M., et al. (Aug. 2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med, 3(95), 95ra73.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mardiros, A., et al. (Oct. 2013). T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood, 122(18), 3138–3148.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Muñoz, L., et al. (Dec. 2001). Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica, 86(12), 1261–1269.

    PubMed  Google Scholar 

  110. Reddy, E. P., Korapati, A., Chaturvedi, P., & Rane, S. (May 2000). IL-3 signaling and the role of Src kinases, JAKs and STATs: A covert liaison unveiled. Oncogene, 19(21), 2532–2547.

    CAS  PubMed  Google Scholar 

  111. Blalock, W. L., et al. (Aug. 1999). Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: Possible sites for intervention with anti-neoplastic drugs. Leukemia, 13(8), Art. no. 8.

    Google Scholar 

  112. Testa, U., et al. (Oct. 2002). Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood, 100(8), 2980–2988.

    CAS  PubMed  Google Scholar 

  113. Budde, L., et al. (Dec. 2017). Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: A first-in-human clinical trial. Blood, 130(Supplement 1), 811.

    Google Scholar 

  114. Brudno, J. N., & Kochenderfer, J. N. (Jan. 2018). Chimeric antigen receptor T-cell therapies for lymphoma. Nature Reviews. Clinical Oncology, 15(1), 31–46.

    CAS  PubMed  Google Scholar 

  115. Park, J. H., Geyer, M. B., & Brentjens, R. J. (Jun. 2016). CD19-targeted CAR T-cell therapeutics for hematologic malignancies: Interpreting clinical outcomes to date. Blood, 127(26), 3312–3320.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cummins, K. D., & Gill, S. (Apr. 2019). Will CAR T cell therapy have a role in AML? Promises and pitfalls. Seminars in Hematology, 56(2), 155–163.

    PubMed  Google Scholar 

  117. Petrov, J. C., et al. (Jun. 2018). Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia, 32(6), 1317–1326.

    PubMed  PubMed Central  Google Scholar 

  118. Kim, M. Y., et al. (May 2018). Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 173(6), 1439–1453.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gill, S., et al. (Apr. 2014). Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood, 123(15), 2343–2354.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cummins, K. D., & Gill, S. (Jul. 2019). Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: How close to reality? Haematologica, 104(7), 1302–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Clackson, T., et al. (Sep. 1998). Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10437–10442.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Straathof, K. C., et al. (Jun. 2005). An inducible caspase 9 safety switch for T-cell therapy. Blood, 105(11), 4247–4254.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hoyos, V., et al. (Jun. 2010). Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia, 24(6), 1160–1170.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, H., & Zhao, Y. (Aug. 2017). Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein & Cell, 8(8), 573–589.

    CAS  Google Scholar 

  125. Ali, R., Ramdial, J., Algaze, S., & Beitinjaneh, A. (Nov. 2017). The role of anti-thymocyte globulin or alemtuzumab-based serotherapy in the prophylaxis and management of graft-versus-host disease. Biomedicines, 5(4).

    Google Scholar 

  126. Cummins, K. D., et al. (Dec. 2017). Treating relapsed/refractory (RR) AML with biodegradable anti-CD123 CAR modified T cells. Blood, 130(Supplement 1), 1359.

    Google Scholar 

  127. Finney, O. C., et al. (May 2019). CD19 CAR T cell product and disease attributes predict leukemia remission durability. The Journal of Clinical Investigation, 129(5), 2123–2132.

    PubMed  PubMed Central  Google Scholar 

  128. Porter, D. L., et al. (Sep. 2015). Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med, 7(303), 303ra139.

    PubMed  PubMed Central  Google Scholar 

  129. Testa, U., Pelosi, E., & Frankel, A. (Feb. 2014). CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark. Res., 2(1), 4.

    PubMed  PubMed Central  Google Scholar 

  130. Löffler, A., et al. (May 2003). Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia, 17(5), 900–909.

    PubMed  Google Scholar 

  131. Huehls, A. M., Coupet, T. A., & Sentman, C. L. (Mar. 2015). Bispecific T cell engagers for cancer immunotherapy. Immunology and Cell Biology, 93(3), 290–296.

    CAS  PubMed  Google Scholar 

  132. Walter, R. B. (Jun. 2014). Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia. Expert Review of Hematology, 7(3), 317–319.

    CAS  PubMed  Google Scholar 

  133. Wolf, E., Hofmeister, R., Kufer, P., Schlereth, B., & Baeuerle, P. A. (Sep. 2005). BiTEs: Bispecific antibody constructs with unique anti-tumor activity. Drug Discovery Today, 10(18), 1237–1244.

    CAS  PubMed  Google Scholar 

  134. Baeuerle, P. A., & Reinhardt, C. (Jun. 2009). Bispecific T-cell engaging antibodies for cancer therapy. Cancer Research, 69(12), 4941–4944. https://doi.org/10.1158/0008-5472.CAN-09-0547

    Article  CAS  PubMed  Google Scholar 

  135. Wickramasinghe, D. (Oct. 2013). Tumor and T cell engagement by BiTE. Discovery Medicine, 16(88), 149–152.

    PubMed  Google Scholar 

  136. Kantarjian, H., et al. (Mar. 2017). Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. The New England Journal of Medicine, 376(9), 836–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Walter, R. B., Appelbaum, F. R., Estey, E. H., & Bernstein, I. D. (Jun. 2012). Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood, 119(26), 6198–6208.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hauswirth, A. W., et al. (2007). Expression of the target receptor CD33 in CD34+/CD38−/CD123+ AML stem cells. European Journal of Clinical Investigation, 37(1), 73–82.

    CAS  PubMed  Google Scholar 

  139. Dinndorf, P. A., Andrews, R. G., Benjamin, D., Ridgway, D., Wolff, L., & Bernstein, I. D. (Apr. 1986). Expression of normal myeloid-associated antigens by acute leukemia cells. Blood, 67(4), 1048–1053.

    CAS  PubMed  Google Scholar 

  140. Laszlo, G. S., et al. (Jan. 2014). Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood, 123(4), 554–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Friedrich, M., et al. (Jun. 2014). Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Molecular Cancer Therapeutics, 13(6), 1549–1557.

    CAS  PubMed  Google Scholar 

  142. Harrington, K. H., et al. (2015). The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PloS One, 10(8), e0135945.

    PubMed  PubMed Central  Google Scholar 

  143. Ravandi, F., et al. (Nov. 2018). A phase 1 first-in-human study of AMG 330, an anti-CD33 Bispecific T-Cell Engager (BiTE®) antibody construct, in Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). Blood, 132(Supplement 1), 25–25.

    Google Scholar 

  144. Ravandi, F., et al. (May 2020). Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J. Clin. Oncol, 38(15_suppl), 7508.

    Google Scholar 

  145. Krupka, C., et al. (Jan. 2014). CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood, 123(3), 356–365.

    CAS  PubMed  Google Scholar 

  146. Herrmann, M., et al. (Dec. 2018). Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood, 132(23), 2484–2494.

    CAS  PubMed  Google Scholar 

  147. Subklewe, M., et al. (Nov. 2019). Preliminary Results from a Phase 1 First-in-Human Study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML). Blood, 134(Supplement_1), 833.

    Google Scholar 

  148. Warlick, E., GTB-3550 TriKE™ for the treatment of high-risk Myelodysplastic Syndromes (MDS) and refractory/relapsed Acute Myeloid Leukemia (AML) safely drives Natural Killer (NK) cell proliferation at initial dose cohorts. Presented at the 62nd ASH Annual Meeting and Exposition, Dec. 2020, Accessed: Feb. 20, 2021. [Online]. Available: https://ash.confex.com/ash/2020/webprogram/Paper136398.html.

  149. Guy, D., & Uy, G. L. (Dec. 2018). Bispecific antibodies for the treatment of acute myeloid leukemia. Current Hematologic Malignancy Reports, 13(6), 417–425.

    PubMed  PubMed Central  Google Scholar 

  150. Westervelt, P. et al., Safety and clinical activity of Amv564, A Cd33/Cd3 T-cell engager, In Patients with relapsed/refractory Acute Myeloid Leukemia (Aml): Updated results from the Phase 1 first-in-human trial, https://library.ehaweb.org/eha/2019/24th/267460, Accessed: Apr 08, 2021.

  151. Stamova, S., et al. (Dec. 2011). Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module. Molecular Immunology, 49(3), 474–482.

    CAS  PubMed  Google Scholar 

  152. Arndt, C., et al. (Apr. 2013). Redirection of T cells with a first fully humanized bispecific CD33-CD3 antibody efficiently eliminates AML blasts without harming hematopoietic stem cells. Leukemia, 27(4), 964–967.

    CAS  PubMed  Google Scholar 

  153. Rossi, D. L., Rossi, E. A., Cardillo, T. M., Goldenberg, D. M., & Chang, C.-H. (Mar. 2014). A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs, 6(2), 381–391.

    PubMed  Google Scholar 

  154. Al-Hussaini, M., et al. (Jan. 2016). Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood, 127(1), 122–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Uy, G. L., et al. (Feb. 2021). Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood, 137(6), 751–762.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Vadakekolathu, J., et al. (Oct. 2020). TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Advances, 4(20), 5011–5024.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Aldoss, I., Flotetuzumab as salvage therapy for primary induction failure and early relapse acute myeloid leukemia. Presented at the 62nd ASH Annual Meeting and Exposition, Dec. 2020, Accessed: Apr. 07, 2021. [Online]. Available: https://ash.confex.com/ash/2020/webprogram/Paper134576.html

  158. Chu, S. Y., et al. (Dec. 2014). Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: A potential therapy for acute myelogenous leukemia. Blood, 124(21), 2316–2316.

    Google Scholar 

  159. Ravandi, F., Complete responses in relapsed/refractory Acute Myeloid Leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 x CD3 T cell-engaging bispecific antibody; initial results of a Phase 1 study. Presented at the 62nd ASH Annual Meeting and Exposition, Dec. 2020, Accessed: Apr 07, 2021. [Online]. Available: https://ash.confex.com/ash/2020/webprogram/Paper134746.html

  160. Comeau, M. R., et al. (Jul. 2019). Abstract LB-199: APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity with limited cytokine release, is well tolerated in repeat dose toxicology studies in cynomolgus macaques. Cancer Res, 79(13 Supplement), LB-199.

    Google Scholar 

  161. Watts, J., Preliminary results from a Phase 1 study of APVO436, a novel anti-CD123 x anti-CD3 bispecific molecule, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Presented at the 62nd ASH Annual Meeting and Exposition, Dec. 2020, Accessed: Feb 21, 2021. [Online]. Available: https://ash.confex.com/ash/2020/webprogram/Paper141619.html

  162. van Rhenen, A., et al. (Oct. 2007). The novel AML stem cell–associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood, 110(7), 2659–2666.

    PubMed  Google Scholar 

  163. van Loo, P. F., et al. (Jul. 2019). MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opinion on Biological Therapy, 19(7), 721–733.

    PubMed  Google Scholar 

  164. Preclinical Evaluation of MCLA117, a CLEC12AxCD3 Bispecific Antibody Efficiently Targeting a Novel Leukemic Stem Cell Associated Antigen in AML | Blood | American Society of Hematology. https://ashpublications.org/blood/article/126/23/325/91038/Preclinical-Evaluation-of-MCLA117-a-CLEC12AxCD3 (accessed Feb 21, 2021).

  165. Braciak, T. A., et al. (2018). Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells. Oncoimmunology, 7(9), e1472195.

    PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

ND reports research funding from Daiichi Sankyo, Bristol-Myers Squibb, Pfizer, Karyopharm, Sevier, Genentech, Astellas, AbbVie, Genentech, Novimmune, Amgen, Trovagene, Gilead, FATE therapeutics, Trillium, Hanmi, Newave, Glycomimetics, and ImmunoGen. He has served in a consulting or advisory role for Daiichi Sankyo, Bristol-Myers Squibb, Pfizer, Novartis, Celgene, AbbVie, Genentech, Servier, Trillium, Syndax, Trovagene, Astellas, Gilead, STAR therapeutics, KITE, and Agios.

Authorship Contributions

FH and ND analyzed the data, wrote the paper, reviewed and approved the manuscript, and shared final responsibility for the decision to submit.

Funding

This work was supported in part by the MD Anderson Cancer Centre Support Grant (CCSG) CA016672, the MD Anderson Cancer Center Leukemia SPORE CA100632, the Charif Souki Cancer Research Fund, the Dick Clark Immunotherapy Fund, and generous philanthropic contributions to the MD Anderson Moon Shots Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naval Daver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haddad, F., Daver, N. (2021). An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond!. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_9

Download citation

Publish with us

Policies and ethics