Skip to main content

Advertisement

Log in

Diaphragmatic electromyography in infants: an overview of possible clinical applications

  • Review Article
  • Published:
Pediatric Research Submit manuscript

Abstract

Preterm infants often experience breathing instability and a hampered lung function. Therefore, these infants receive cardiorespiratory monitoring and respiratory support. However, the current respiratory monitoring technique may be unreliable for especially obstructive apnea detection and classification and it does not provide insight in breathing effort. The latter makes the selection of the adequate mode and level of respiratory support difficult. Electromyography of the diaphragm (dEMG) has the potential of monitoring heart rate (HR) and respiratory rate (RR), and it provides additional information on breathing effort. This review summarizes the available evidence on the clinical potential of dEMG to provide cardiorespiratory monitoring, to synchronize patient-ventilator interaction, and to optimize the mode and level of respiratory support in the individual newborn infant. We also try to identify gaps in knowledge and future developments needed to ensure widespread implementation in clinical practice.

Impact

  • Preterm infants require cardiorespiratory monitoring and respiratory support due to breathing instability and a hampered lung function.

  • The current respiratory monitoring technique may provide unreliable measurements and does not provide insight in breathing effort, which makes the selection of the optimal respiratory support settings difficult.

  • Measuring diaphragm activity could improve cardiorespiratory monitoring by providing insight in breathing effort and could potentially have an important role in individualizing respiratory support in newborn infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The dEMG-related parameters.

Similar content being viewed by others

References

  1. Donn, S. M., Mammel, M. C. & van Kaam, A. H. L. C. Manual of Neonatal Respiratory Care 5 edn (Springer, 2022).

  2. Di Fiore, J. M., Poets, C. F., Gauda, E., Martin, R. J. & MacFarlane, P. Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J. Perinatol. 36, 165–171 (2016).

    Article  PubMed  Google Scholar 

  3. Di Fiore, J. M. Neonatal cardiorespiratory monitoring techniques. Semin Neonatol. 9, 195–203 (2004).

    Article  PubMed  Google Scholar 

  4. van Kaam, A. H. et al. Modes and strategies for providing conventional mechanical ventilation in neonates. Pediatr. Res. 90, 957–962 (2021).

    Article  PubMed  Google Scholar 

  5. Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Transcutaneous electromyography of the diaphragm: a cardio-respiratory monitor for preterm infants. Pediatr. Pulmonol. 50, 889–895 (2015).

    Article  PubMed  Google Scholar 

  6. Stein, H., Beck, J. & Dunn, M. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns. Semin. Fetal Neonatal Med. 21, 154–161 (2016).

    Article  PubMed  Google Scholar 

  7. Beck, J. & Sinderby, C. Neurally adjusted ventilatory assist in newborns. Clin. Perinatol. 48, 783–811 (2021).

    Article  PubMed  Google Scholar 

  8. Barrow, A. & Pandit, J. J. Lung ventilation and the physiology of breathing. Surg. (Oxf.) 35, 227–233 (2017).

    Article  Google Scholar 

  9. Di Fiore, J. M., Martin, R. J. & Gauda, E. B. Apnea of prematurity-perfect storm. Respir. Physiol. Neurobiol. 189, 213–222 (2013).

    Article  PubMed  Google Scholar 

  10. Hopkins, P. M. Skeletal muscle physiology. Contin. Educ. Anaesth. Crit. Care Pain. 6, 1–6 (2006).

    Article  Google Scholar 

  11. Blackburn, S. T. Maternal, Fetal, Neonatal Physiology—A Clinical Perspective 5th Edition edn (Elsevier, 2018).

  12. van Leuteren, R. W. et al. Processing transcutaneous electromyography measurements of respiratory muscles, a review of analysis techniques. J. Electromyogr. Kinesiol 48, 176–186 (2019).

    Article  PubMed  Google Scholar 

  13. van Leuteren, R. W. et al. Diaphragmatic electromyography in preterm infants: the influence of electrode positioning. Pediatr. Pulmonol. 55, 354–359 (2020).

    Article  PubMed  Google Scholar 

  14. Scholten, A. W. J. et al. Feasibility of wireless cardiorespiratory monitoring with dry electrodes incorporated in a belt in preterm infants. Physiol. Meas. 43, 1–8 (2022).

  15. Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Diagnosis of hemidiaphragmatic paresis in a preterm infant with transcutaneous electromyography: a case report. Neonatology 108, 38–41 (2015).

    Article  PubMed  Google Scholar 

  16. Jonkman, A. H. et al. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med. 46, 2301–2313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bellani, G. et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir. Care 63, 1341–1349 (2018).

    Article  PubMed  Google Scholar 

  18. Lin, L., Guan, L., Wu, W. & Chen, R. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir. Physiol. Neurobiol. 259, 45–52 (2019).

    Article  PubMed  Google Scholar 

  19. van Leuteren, R. W. et al. Cardiorespiratory monitoring in the delivery room using transcutaneous electromyography. Arch. Dis. Child Fetal Neonatal Ed. 106, 352–356 (2021).

    Article  PubMed  Google Scholar 

  20. Burgin, C. et al. Multichannel esophageal signals to monitor respiratory rate in preterm infants. Pediatr. Res 91, 572–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Simmen, P. et al. Multichannel esophageal heart rate monitoring of preterm infants. IEEE Trans. Biomed. Eng. 68, 1903–1912 (2021).

    Article  PubMed  Google Scholar 

  22. Beck, J. et al. Characterization of neural breathing pattern in spontaneously breathing preterm infants. Pediatr. Res 70, 607–613 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kraaijenga, J. V. et al. Classifying apnea of prematurity by transcutaneous electromyography of the diaphragm. Neonatology 113, 140–145 (2018).

    Article  PubMed  Google Scholar 

  24. Sinclair, R., Teng, A., Jonas, C. & Schindler, T. Congenital central hypoventilation syndrome: a pictorial demonstration of absent electrical diaphragmatic activity using non-invasive neurally adjusted ventilatory assist. J. Paediatr. Child Health 54, 200–202 (2018).

    Article  PubMed  Google Scholar 

  25. Essouri, S. et al. Relationship between diaphragmatic electrical activity and esophageal pressure monitoring in children. Pediatr. Crit. Care Med. 20, e319–e325 (2019).

    Article  PubMed  Google Scholar 

  26. Bellani, G. et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit. Care Med. 41, 1483–1491 (2013).

    Article  PubMed  Google Scholar 

  27. van Leuteren, R. W., de Waal, C. G., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Transcutaneous monitoring of diaphragm activity as a measure of work of breathing in preterm infants. Pediatr. Pulmonol. 56, 1593–1600 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crulli, B. et al. Evolution of inspiratory muscle function in children during mechanical ventilation. Crit. Care 25, 229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fine-Goulden, M. R., Puppala, N. K. & Durward, A. Mechanisms of ventilator dependence in children with neuromuscular and respiratory control disorders identified by monitoring diaphragm electrical activity. Intensive Care Med. 38, 2072–2079 (2012).

    Article  PubMed  Google Scholar 

  30. Martin, S., Feder, J., Ducharme-Crevier, L., Savy, N. & Emeriaud, G. Diaphragm electrical activity target during nava: one size may not fit all. Pediatr. Pulmonol. 57, 1358–1360 (2022).

    Article  PubMed  Google Scholar 

  31. Epstein, S. K. How often does patient-ventilator asynchrony occur and what are the consequences? Respir. Care 56, 25–38 (2011).

    Article  PubMed  Google Scholar 

  32. de Waal, C. G., Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Breath detection by transcutaneous electromyography of the diaphragm and the Graseby capsule in preterm infants. Pediatr. Pulmonol. 52, 1578–1582 (2017).

    Article  PubMed  Google Scholar 

  33. Soreze, Y., Motte, E., Dell’Orto, V., Yousef, N. & De Luca, D. Use of neurally adjusted ventilator assist in postsurgical hemidiaphragmatic paralysis. Arch. Dis. Child Fetal Neonatal Ed. 103, F86–F87 (2018).

    Article  PubMed  Google Scholar 

  34. Kurland, Y. et al. Neurally adjusted ventilatory assist in neonates with congenital diaphragmatic hernia. J. Perinatol. 41, 1910–1915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gentili, A. et al. Neurally adjusted ventilatory assist in weaning of neonates affected by congenital diaphragmatic hernia. J. Matern Fetal Neonatal Med. 26, 598–602 (2013).

    Article  PubMed  Google Scholar 

  36. Durrani, N. U., Chedid, F. & Rahmani, A. Neurally adjusted ventilatory assist mode used in congenital diaphragmatic hernia. J. Coll. Physicians Surg. Pak. 21, 637–639 (2011).

    PubMed  Google Scholar 

  37. Amin, R. & Arca, M. J. Feasibility of non-invasive neurally adjusted ventilator assist after congenital diaphragmatic hernia repair. J. Pediatr. Surg. 54, 434–438 (2019).

    Article  PubMed  Google Scholar 

  38. Lee, J. et al. Non-invasive neurally adjusted ventilatory assist in preterm infants: a randomised phase II crossover trial. Arch. Dis. Child Fetal Neonatal Ed. 100, F507–F513 (2015).

    Article  PubMed  Google Scholar 

  39. Yagui, A. C. et al. Nasal continuous positive airway pressure (NCPAP) or noninvasive neurally adjusted ventilatory assist (NIV-NAVA) for preterm infants with respiratory distress after birth: a randomized controlled trial. Pediatr. Pulmonol. 54, 1704–1711 (2019).

    Article  PubMed  Google Scholar 

  40. Yagui, A. C. et al. Is noninvasive neurally adjusted ventilatory assistance (Niv-Nava) an alternative to ncpap in preventing extubation failure in preterm infants? J. Matern Fetal Neonatal. Med. 34, 3756–3760 (2021).

    Article  PubMed  Google Scholar 

  41. Kallio, M. et al. Neurally adjusted ventilatory assist (Nava) in preterm newborn infants with respiratory distress syndrome-a randomized controlled trial. Eur. J. Pediatr. 175, 1175–1183 (2016).

    Article  PubMed  Google Scholar 

  42. Kamlin, C. O., Davis, P. G. & Morley, C. J. Predicting successful extubation of very low birthweight infants. Arch. Dis. Child Fetal Neonatal Ed. 91, F180–F183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Currie, A., Patel, D. S., Rafferty, G. F. & Greenough, A. Prediction of extubation outcome in infants using the tension time index. Arch. Dis. Child Fetal Neonatal Ed. 96, F265–F269 (2011).

    Article  PubMed  Google Scholar 

  44. Latremouille, S., Bhuller, M., Rao, S., Shalish, W. & Sant’Anna, G. Diaphragmatic activity and neural breathing variability during a 5-min endotracheal continuous positive airway pressure trial in extremely preterm infants. Pediatr. Res. 89, 1810–1817 (2021).

    Article  PubMed  Google Scholar 

  45. Khan, N., Brown, A. & Venkataraman, S. T. Predictors of extubation success and failure in mechanically ventilated infants and children. Crit. Care Med. 24, 1568–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. van Leuteren, R. W. et al. Diaphragm activity pre and post extubation in ventilated critically ill infants and children measured with transcutaneous electromyography. Pediatr. Crit. Care Med. 22, 950–959 (2021).

    Article  PubMed  Google Scholar 

  47. Hunt, K. A., Hunt, I., Ali, K., Dassios, T. & Greenough, A. Prediction of extubation success using the diaphragmatic electromyograph results in ventilated neonates. J. Perinat. Med. 48, 609–614 (2020).

    Article  PubMed  Google Scholar 

  48. Xue, Y., Yang, C. F., Ao, Y., Qi, J. & Jia, F. Y. A prospective observational study on critically Ill children with diaphragmatic dysfunction: clinical outcomes and risk factors. BMC Pediatr. 20, 422 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Dreyfuss, D. & Saumon, G. Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med. 157, 294–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Rothaar, R. C. & Epstein, S. K. Extubation failure: magnitude of the problem, impact on outcomes, and prevention. Curr. Opin. Crit. Care 9, 59–66 (2003).

    Article  PubMed  Google Scholar 

  51. Laham, J. L., Breheny, P. J. & Rush, A. Do clinical parameters predict first planned extubation outcome in the pediatric intensive care unit? J. Intensive Care Med. 30, 89–96 (2015).

    Article  PubMed  Google Scholar 

  52. Singh, N., McNally, M. J. & Darnall, R. A. Does diaphragmatic electrical activity in preterm infants predict extubation success? Respir. Care 63, 203–207 (2018).

    Article  PubMed  Google Scholar 

  53. Iyer, N. P. et al. Neural breathing pattern in newborn infants pre- and postextubation. Acta Paediatr. 106, 1928–1933 (2017).

    Article  PubMed  Google Scholar 

  54. Keszler, M. & Suresh Gautham, K. Goldsmith’s Assisted Ventilation of the Neonate, Vol. 7, 83–84 (Elsevier, 2022).

  55. Williams, E. E. et al. Diaphragmatic electromyography during a spontaneous breathing trial to predict extubation failure in preterm infants. Pediatr. Res. 92, 1064–1069 (2022).

  56. Emeriaud, G., Beck, J., Tucci, M., Lacroix, J. & Sinderby, C. Diaphragm electrical activity during expiration in mechanically ventilated infants. Pediatr. Res. 59, 705–710 (2006).

    Article  PubMed  Google Scholar 

  57. Naples, R., Fenton, A. C., Brodlie, M., Harigopal, S. & O’Brien, C. Diaphragm electrical activity during weaning of nasal high-flow therapy in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 108, 237–243 (2023).

  58. Hough, J. L., Shearman, A. D., Jardine, L. & Schibler, A. Nasal high flow in preterm infants: a dose-finding study. Pediatr. Pulmonol. 55, 616–623 (2020).

    Article  PubMed  Google Scholar 

  59. Jeffreys, E., Hunt, K. A., Dassios, T. & Greenough, A. Diaphragm electromyography results at different high flow nasal cannula flow rates. Eur. J. Pediatr. 178, 1237–1242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nasef, N. et al. High-flow nasal cannulae are associated with increased diaphragm activation compared with nasal continuous positive airway pressure in preterm infants. Acta Paediatr. 104, e337–e343 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. de Waal, C. G., Hutten, G. J., Kraaijenga, J. V., de Jongh, F. H. & van Kaam, A. H. Electrical activity of the diaphragm during nCPAP and high flow nasal cannula. Arch. Dis. Child Fetal Neonatal Ed. 102, F434–F438 (2017).

    Article  PubMed  Google Scholar 

  62. Oda, A., Parikka, V., Lehtonen, L., Porres, I. & Soukka, H. Nasal high-flow therapy decreased electrical activity of the diaphragm in preterm infants during the weaning phase. Acta Paediatr. 108, 253–257 (2019).

    Article  PubMed  Google Scholar 

  63. Kraaijenga, J. V., de Waal, C. G., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Diaphragmatic activity during weaning from respiratory support in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 102, F307–F311 (2017).

    Article  PubMed  Google Scholar 

  64. Williams, E. E. et al. Electrical activity of the diaphragm following a loading dose of caffeine citrate in ventilated preterm infants. Pediatr. Res. 87, 740–744 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants. J. Pediatr. 167, 70–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Parikka, V. et al. The effect of caffeine citrate on neural breathing pattern in preterm infants. Early Hum. Dev. 91, 565–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. de Waal, C. G., Hutten, G. J., Kraaijenga, J. V., de Jongh, F. H. & van Kaam, A. H. Doxapram treatment and diaphragmatic activity in preterm infants. Neonatology 115, 85–88 (2019).

    Article  PubMed  Google Scholar 

  68. Araki, R. et al. Effect of doxapram on the electrical activity of the diaphragm waveform pattern of preterm infants. Pediatr. Pulmonol. 57, 1483–1488 (2022).

    Article  PubMed  Google Scholar 

  69. de Waal, C. G., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. The effect of minimally invasive surfactant therapy on diaphragmatic activity. Neonatology 114, 76–81 (2018).

    Article  PubMed  Google Scholar 

  70. Dekker, J. et al. The effect of initial high vs. low Fio2 on breathing effort in preterm infants at birth: a randomized controlled trial. Front Pediatr. 7, 504 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Leuteren, R. W. et al. The effect of initial oxygen exposure on diaphragm activity in preterm infants at birth. Front Pediatr. 9, 640491 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hutten, G. J. et al. Relative impact of respiratory muscle activity on tidal flow and end expiratory volume in healthy neonates. Pediatr. Pulmonol. 43, 882–891 (2008).

    Article  PubMed  Google Scholar 

  73. Eichenwald, E. C., Ungarelli, R. A. & Stark, A. R. Hypercapnia increases expiratory braking in preterm infants. J. Appl Physiol. (1985) 75, 2665–2670 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Neumann-Klimasinska, N. et al. Effects of heliox and non-invasive neurally adjusted ventilatory assist (Niv-Nava) in preterm infants. Sci. Rep. 11, 15778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kass, J. E. Heliox redux. Chest 123, 673–676 (2003).

    Article  PubMed  Google Scholar 

  76. Amigoni, A. et al. Effects of propofol on diaphragmatic electrical activity in mechanically ventilated pediatric patients. Intensive Care Med. 41, 1860–1861 (2015).

    Article  PubMed  Google Scholar 

  77. Gerard-Castaing, N. et al. Diaphragmatic paralysis in young children: a literature review. Pediatr. Pulmonol. 54, 1367–1373 (2019).

    Article  PubMed  Google Scholar 

  78. Bordessoule, A., Emeriaud, G., Delnard, N., Beck, J. & Jouvet, P. Recording diaphragm activity by an oesophageal probe: a new tool to evaluate the recovery of diaphragmatic paralysis. Intensive Care Med. 36, 1978–1979 (2010).

    Article  PubMed  Google Scholar 

  79. Emeriaud, G. et al. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 40, 1718–1726 (2014).

    Article  PubMed  Google Scholar 

  80. Scholten, A. W. J., van Leuteren, R. W., de Jongh, F. H., van Kaam, A. H. & Hutten, G. J. Simultaneous measurement of diaphragm activity, chest impedance, and ECG using three standard cardiorespiratory monitoring electrodes. Pediatr. Pulmonol. 57, 2754–2762 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. wrote the first version of the manuscript. A.S., R.v.L., F.d.J., C.d.W., J.K., A.v.K., and J.H. modified the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gerard J. Hutten.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholten, A.W.J., van Leuteren, R.W., de Waal, C.G. et al. Diaphragmatic electromyography in infants: an overview of possible clinical applications. Pediatr Res 95, 52–58 (2024). https://doi.org/10.1038/s41390-023-02800-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02800-1

  • Springer Nature America, Inc.

Navigation