Skip to main content

Advertisement

Log in

LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

The long non-coding RNA (LncRNA) abnormally expresses in several cancers including non-small cell lung cancer (NSCLC). To better understand the role of key lncRNA involving cancer progress, we conduct a comprehensive data mining on LINC00467 and determine its molecular mechanisms. We identified LINC00467 was the up-regulated lncRNA that common significantly differentially expressed in NSCLC and CRC tissues from GEO database. LINC00467 highly expressed in NSCLC tissues and associated with advanced clinical stages and poor outcome. Knockdown of LINC00467 inhibited cell growth and metastasis via regulating the Akt signaling pathway. Finally, we demonstrated that TDG mediated acetylation is the key factor controlling LINC00467 expression. In conclusion, LINC00467 promotes NSCLC progression via Akt signal pathway. The identified LINC00467 may serve as a valuable diagnostic and prognostic biomarker as well as a therapeutic target for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: LINC00467 plays a pivotal role in NSCLC.
Fig. 2: LINC00467 promotes metastasis in NSCLC.
Fig. 3: LINC00467 activates AKT, can bind and promote the degradation of AZGP1.
Fig. 4: Knockdown of AZGP1 up-regulates p-AKT and promotes cell migration and invasion.
Fig. 5: LINC00467 up-regulated by TDG mediated acetylation.
Fig. 6: Knockdown of TDG-mediated histone acetylation contributes to inhibit tumor progress.
Fig. 7: TDG promotes tumor development of NSCLC.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin. 2018;68:7–30. https://doi.org/10.3322/caac.21442.

    Article  Google Scholar 

  2. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80. https://doi.org/10.1056/NEJMra0802714.

    Article  CAS  PubMed  Google Scholar 

  3. Yin D, Lu X, Su J, He X, De W, Yang J, et al. Long noncoding RNA AFAP1-AS1 predicts a poor prognosis and regulates non-small cell lung cancer cell proliferation by epigenetically repressing p21 expression. Mol Cancer. 2018;17:92. https://doi.org/10.1186/s12943-018-0836-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herreros-Pomares A, de-Maya-Girones JD, Calabuig-Farinas S, Lucas R, Martinez A, Pardo-Sanchez JM, et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019;10:660. https://doi.org/10.1038/s41419-019-1898-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirsch FR, Suda K, Wiens J, Bunn PA Jr. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016;388:1012–24. https://doi.org/10.1016/s0140-6736(16)31473-8.

    Article  PubMed  Google Scholar 

  6. Rizvi NA, Peters S. Immunotherapy for unresectable stage iii non-small-cell lung cancer. N Engl J Med. 2017;377:1986–8. https://doi.org/10.1056/NEJMe1711430.

    Article  PubMed  Google Scholar 

  7. Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell. 2018;174:564–75.e18. https://doi.org/10.1016/j.cell.2018.06.014.

    Article  CAS  PubMed  Google Scholar 

  8. Loewen G, Jayawickramarajah J, Zhuo Y, Shan B. Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol. 2014;7:90. https://doi.org/10.1186/s13045-014-0090-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue YN, Yan Y, Chen ZZ, Chen J, Tang FJ, Xie HQ, et al. LncRNA TUG1 regulates FGF1 to enhance endothelial differentiation of adipose-derived stem cells by sponging miR-143. J Cell Biochem. 2019;120:19087–97. https://doi.org/10.1002/jcb.29232.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y, He D, Bo H, Liu Z, Xiao M, Xiang L, et al. The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo-TAZ pathway. Oncogene. 2019;38:6065–81. https://doi.org/10.1038/s41388-019-0858-7.

    Article  CAS  PubMed  Google Scholar 

  11. Wei S, Wang K, Huang X, Zhao Z, Zhao Z. LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis. Int J Immunopathol Pharmacol. 2019;33:2058738419859699. https://doi.org/10.1177/2058738419859699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guan H, Zhu T, Wu S, Liu S, Liu B, Wu J, et al. Long noncoding RNA LINC00673-v4 promotes aggressiveness of lung adenocarcinoma via activating WNT/beta-catenin signaling. Proc Natl Acad Sci USA. 2019;116:14019–28. https://doi.org/10.1073/pnas.1900997116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang Z, Lei W, Hu HB, Zhang H, Zhu Y. H19 promotes non-small-cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR-17. J Cell Physiol. 2018;233:6768–76. https://doi.org/10.1002/jcp.26530.

    Article  CAS  PubMed  Google Scholar 

  14. Chen T, Qin S, Gu Y, Pan H, Bian D. Long non-coding RNA NORAD promotes the occurrence and development of non-small cell lung cancer by adsorbing MiR-656-3p. Mol Genet Genom Med. 2019;7:e757. https://doi.org/10.1002/mgg3.757.

    Article  CAS  Google Scholar 

  15. Yang J, Liu Y, Mai X, Lu S, Jin L, Tai X. STAT1-induced upregulation of LINC00467 promotes the proliferation migration of lung adenocarcinoma cells by epigenetically silencing DKK1 to activate Wnt/beta-catenin signaling pathway. Biochemical Biophysical Res Commun. 2019;514:118–26. https://doi.org/10.1016/j.bbrc.2019.04.107.

    Article  CAS  Google Scholar 

  16. Oka H, Kojima T, Ihara K, Kobayashi T, Nakano H. Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XlnR using integrated mining of gSELEX-Seq and microarray data. BMC Genomics. 2019;20:16. https://doi.org/10.1186/s12864-018-5375-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Liu H, Shen K, Pan X, Wei Y, Lv T, et al. Long intergenic noncoding RNA 00467 promotes lung adenocarcinoma proliferation, migration and invasion by binding with EZH2 and repressing HTRA3 expression. Mol Med Rep. 2019;20:640–54. https://doi.org/10.3892/mmr.2019.10292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Jiang C, Fu L, Zhu CL, Xiang YQ, Jiang LX, et al. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin beta1 and Merlin. Int J Biol Sci. 2019;15:1802–15. https://doi.org/10.7150/ijbs.34785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiong R, Lu X, Song J, Li H, Wang S. Molecular mechanisms of hydrogen sulfide against uremic accelerated atherosclerosis through cPKCbetaII/Akt signal pathway. BMC Nephrol. 2019;20:358. https://doi.org/10.1186/s12882-019-1550-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49:1083–96. https://doi.org/10.1016/j.molcel.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  21. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell. 2002;9:265–77. https://doi.org/10.1016/s1097-2765(02)00453-7.

    Article  CAS  PubMed  Google Scholar 

  22. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu C, Quinn J, Chang HY Chromatin isolation by RNA purification (ChIRP). J Vis Exp. 2012 Mar 25;(61). pii: 3912. 10.3791/3912.

  24. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteom. 2012;11:1475–88. https://doi.org/10.1074/mcp.O112.020131.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank all the authors for their excellent work.

Funding

This work was supported by the National Natural Science Foundation of China (81874137), the Outstanding Youth Foundation of Hunan Province (2018JJ1047), the Huxiang Young Talent Project (2016RS3022). the Hunan Province Science and technology talent promotion project (2019TJ-Q10), the Project of scientific research plan of health and Family Planning Commission of Hunan Province (c20180476).

Author information

Authors and Affiliations

Authors

Contributions

KC designed the study, YXZ, JJL analyzed and interpreted the data, and wrote the manuscript. HB completed all the bio-analysis of this article study. DH, MQX, LX, LG, and YH contributed to data acquisition, analysis and interpretation. YYZ provided clinical database compilation and analysis. YXC performed all bioinformatics analysis. LPD, RRZ, and YNM carried out the experiments. All authors have seen and approved the final version of the manuscript.

Corresponding author

Correspondence to Ke Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was approved by the Ethics Committee of Third Xiangya Hospital of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, J., Bo, H. et al. LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression. Oncogene 39, 6071–6084 (2020). https://doi.org/10.1038/s41388-020-01421-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01421-w

  • Springer Nature Limited

This article is cited by

Navigation