Skip to main content

Advertisement

Log in

SP1-induced overexpression of LINC00520 facilitates non-small cell lung cancer progression through miR-577/CCNE2 pathway and predicts poor prognosis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) have gained much attention in the past few years. Long intergenic non-protein coding RNA 520 (LINC00520) was one of the newly discovered lncRNA which has been demonstrated to be dysregulated in several cancers. So far, the function and mechanism of LINC00520 in non-small cell lung cancer (NSCLC) are unclear. In this paper, our group first showed that LINC00520 level was elevated in non-small cell lung cancer (NSCLC) tissue and cells. In addition, SP1 could bind directly to the promoter region of LINC00520 and thus promote its transcription. Increased LINC00520 was distinctly correlated with advanced tumor stage and shorter survival time in NSCLC patients. Further functional investigations provided evidences that forced down regulation of LINC00520 inhibited NSCLC cell proliferation, invasion, metastasis and EMT, while contributing to cells apoptosis. Mechanistically, we found that LINC00520 serving as a competing endogenous RNA to be involved in the modulation of miR-577 expressions, and thus affected the expression of CCNE2 which was a target gene of miR-577. Moreover, in NSCLC cells with si-LINC00520, up regulation of CCNE2 led to an increase of cell growth and invasion. Taken together, LINC00520 displayed its tumor-promotive roles through modulating the miR-577/CCNE2 axis, highlighting a potential therapeutic strategy for NSCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89. https://doi.org/10.3322/caac.21349.

    Article  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  3. Black RC, Khurshid H. NSCLC: an update of driver mutations, their role in pathogenesis and clinical significance. R I Med J (2013). 2015;98(10):25–8.

    Google Scholar 

  4. Hong QY, Wu GM, Qian GS, Hu CP, Zhou JY, Chen LA, et al. Prevention and management of lung cancer in China. Cancer. 2015;121(Suppl 17):3080–8. https://doi.org/10.1002/cncr.29584.

    Article  PubMed  Google Scholar 

  5. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet (London, England). 2017;389(10066):299–311. https://doi.org/10.1016/s0140-6736(16)30958-8.

    Article  CAS  Google Scholar 

  6. Anagnostou VK, Brahmer JR. Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. Clin Cancer Res. 2015;21(5):976–84. https://doi.org/10.1158/1078-0432.ccr-14-1187.

    Article  CAS  PubMed  Google Scholar 

  7. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo ClinProc. 2008;83(5):584–94. https://doi.org/10.4065/83.5.584.

    Article  Google Scholar 

  8. Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends BiochemSci. 2014;39(1):35–43. https://doi.org/10.1016/j.tibs.2013.10.002.

    Article  CAS  Google Scholar 

  9. Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. FunctIntegrGenom. 2017;17(2–3):135–43. https://doi.org/10.1007/s10142-016-0524-x.

    Article  CAS  Google Scholar 

  10. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. https://doi.org/10.1038/nrg.2015.10.

    Article  CAS  PubMed  Google Scholar 

  11. Li P, Tong L, Song Y, Sun J, Shi J, Wu Z, et al. Long noncoding RNA H19 participates in metformin-mediated inhibition of gastric cancer cell invasion. J Cell Physiol. 2018. https://doi.org/10.1002/jcp.27269.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma Y, Bu D, Long J, Chai W, Dong J. LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. J Cell Physiol. 2018. https://doi.org/10.1002/jcp.27105.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Greco S, Salgado Somoza A, Devaux Y, Martelli F. Long noncoding RNAs and cardiac disease. Antioxid Redox Signal. 2018;29(9):880–901. https://doi.org/10.1089/ars.2017.7126.

    Article  CAS  PubMed  Google Scholar 

  14. Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods MolBiol (Clifton, NJ). 2017;1509:1–10. https://doi.org/10.1007/978-1-4939-6524-3_1.

    Article  CAS  Google Scholar 

  15. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–8. https://doi.org/10.1136/jmedgenet-2015-103334.

    Article  CAS  PubMed  Google Scholar 

  17. Chen B, Wang C, Zhang J, Zhou Y, Hu W, Guo T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int. 2018;18:157. https://doi.org/10.1186/s12935-018-0652-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henry WS, Hendrickson DG, Beca F, Glass B, Lindahl-Allen M, He L, et al. LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. Oncotarget. 2016;7(50):81981–94. https://doi.org/10.18632/oncotarget.11962.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genom. 2018;293(1):1–15. https://doi.org/10.1007/s00438-017-1370-9.

    Article  CAS  Google Scholar 

  20. She J, Yang P, Hong Q, Bai C. Lung cancer in China: challenges and interventions. Chest. 2013;143(4):1117–26. https://doi.org/10.1378/chest.11-2948.

    Article  PubMed  Google Scholar 

  21. Evans M. Lung cancer: needs assessment, treatment and therapies. Br J Nurs. 2013;22(17):S15–6. https://doi.org/10.12968/bjon.2013.22.Sup17.S15.

    Article  PubMed  Google Scholar 

  22. Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet (London, England). 2013;382(9893):709–19. https://doi.org/10.1016/s0140-6736(13)61502-0.

    Article  CAS  Google Scholar 

  23. Vargas AJ, Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer. 2016;16(8):525–37. https://doi.org/10.1038/nrc.2016.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herriges MJ, Swarr DT, Morley MP, Rathi KS, Peng T, Stewart KM, et al. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev. 2014;28(12):1363–79. https://doi.org/10.1101/gad.238782.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su X, Teng J, Jin G, Li J, Zhao Z, Cao X, et al. ELK1-induced upregulation of long non-coding RNA MIR100HG predicts poor prognosis and promotes the progression of osteosarcoma by epigenetically silencing LATS1 and LATS2. Biomed PharmacotherBiomedecinePharmacotherapie. 2019;109:788–97. https://doi.org/10.1016/j.biopha.2018.10.029.

    Article  CAS  Google Scholar 

  26. Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T, et al. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis. 2018;9(10):982. https://doi.org/10.1038/s41419-018-0962-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu YY, Gao W, Zhang YL, Niu M, Cui JJ, Xiang CX, et al. Expression and clinical significance of long non-coding RNA LINC00520 in laryngeal squamous cell carcinoma. Lin chuanger bi yanhoutoujingwaikezazhi J ClinOtorhinolaryngol Head Neck Surg. 2018;32(2):91–5. https://doi.org/10.13201/j.issn.1001-1781.2018.02.003.

    Article  Google Scholar 

  28. Yu J, Liu Y, Gong Z, Zhang S, Guo C, Li X, et al. Overexpression long non-coding RNA LINC00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma. Oncotarget. 2017;8(10):16621–32. https://doi.org/10.18632/oncotarget.14200.

    Article  PubMed  Google Scholar 

  29. Ren D, Zheng H, Fei S, Zhao JL. MALAT1 induces osteosarcoma progression by targeting miR-206/CDK9 axis. J Cell Physiol. 2018;234(1):950–7. https://doi.org/10.1002/jcp.26923.

    Article  CAS  PubMed  Google Scholar 

  30. Salavaty A, Motlagh FM, Barabadi M, Cheshomi H, Esmatabadi MJD, Shahmoradi M, et al. Potential role of RAB6C-AS1 long noncoding RNA in different cancers. J Cell Physiol. 2018;234(1):891–903. https://doi.org/10.1002/jcp.26910.

    Article  CAS  PubMed  Google Scholar 

  31. Wang B, Sun L, Li J, Jiang R. miR-577 suppresses cell proliferation and epithelial-mesenchymal transition by regulating the WNT2B mediated Wnt/beta-catenin pathway in non-small cell lung cancer. Mol Med Rep. 2018;18(3):2753–61. https://doi.org/10.3892/mmr.2018.9279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei N, Wei H, Zhang H. Long non-coding RNA ZEB1-AS1 promotes glioma cell proliferation, migration and invasion through regulating miR-577. Eur Rev Med PharmacolSci. 2018;22(10):3085–93. https://doi.org/10.26355/eurrev_201805_15068.

    Article  CAS  Google Scholar 

  33. Zhang W, Shen C, Li C, Yang G, Liu H, Chen X, et al. miR-577 inhibits glioblastoma tumor growth via the Wnt signaling pathway. MolCarcinog. 2016;55(5):575–85. https://doi.org/10.1002/mc.22304.

    Article  CAS  Google Scholar 

  34. Chen D, Guo W, Qiu Z, Wang Q, Li Y, Liang L, et al. MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer. CancerLett. 2015;362(2):208–17. https://doi.org/10.1016/j.canlet.2015.03.041.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Henan Provincial Chest Hospital for Scientific Research (No. 2018-0147).

Author information

Authors and Affiliations

Authors

Contributions

J-fW and Y-hQ conceived and designed the experiments, J-fW, Z-nX and ZB analyzed, and interpreted the results of the experiments, J-fW, Z-nX and H-jS performed the experiments.

Corresponding author

Correspondence to Ya-hong Qiao.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors. The authors declare that they have no competing interests, and all authors should confirm its accuracy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jf., Xi, Zn., Su, Hj. et al. SP1-induced overexpression of LINC00520 facilitates non-small cell lung cancer progression through miR-577/CCNE2 pathway and predicts poor prognosis. Human Cell 34, 952–964 (2021). https://doi.org/10.1007/s13577-021-00518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00518-y

Keywords

Navigation