Skip to main content

Advertisement

Log in

IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Autophagy is a homeostatic process that recycles damaged organelles and long-lived proteins by delivering them in double-membrane vesicles to lysosomes for degradation. Autophagy has a prominent role in survival, proliferation, and resistance of tumors in metabolic and chemotherapeutic stress conditions. Clinical trials with chloroquine—a known autophagy inhibitor—were unable to achieve complete autophagy inhibition in vivo, warranting the search for more potent autophagy inhibitors. In a process of exploring the mechanism of action of previously identified cytotoxic s-triazine analogs, we discovered that both IITZ-01 and IITZ-02 act as potent autophagy inhibitors. Treatment with these compounds resulted in the vacuolated appearance of cells due to their specific accumulation in lysosomes. In addition, these basic compounds also deacidify lysosomes as evidenced by the decrease in lysotracker red staining and inhibit maturation of lysosomal enzymes leading to lysosomal dysfunction. IITZ-01 and IITZ-02 enhance autophagosome accumulation but inhibit autophagosomal degradation by impairing lysosomal function, finally resulting in the inhibition of autophagy. Interestingly, compound IITZ-01 exhibited more than 10-fold potent autophagy inhibition along with 12- to 20-fold better cytotoxic action than CQ. IITZ-01 and IITZ-02 also abolished mitochondrial membrane potential and triggered apoptosis through the mitochondria-mediated pathway. Furthermore, IITZ-01 and IITZ-02 displayed potent antitumor action in vivo through autophagy inhibition and apoptosis induction in MDA-MB-231 breast cancer xenograft model with IITZ-01 exhibiting superior anticancer efficacy. Overall, these data demonstrate that IITZ-01 is potent autophagy inhibitor with single-agent anticancer activity and awaits further preclinical development as potential anticancer therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer Targets Ther. 2016;8:93.

    CAS  Google Scholar 

  2. Pal S, Lüchtenborg M, Davies EA, Jack RH. The treatment and survival of patients with triple negative breast cancer in a London population. +. 2014;3:553.

    PubMed  PubMed Central  Google Scholar 

  3. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16(Supplement 1):1–11.

    Article  PubMed  Google Scholar 

  4. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009;43:67–93.

  5. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS ONE. 2013;8:e82481.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD, Will Y. A high content screening assay for identifying lysosomotropic compounds. Toxicol Vitr. 2011;25:715–23.

    Article  CAS  Google Scholar 

  10. Amaravadi RK, Lippincott-Schwartz J, Yin X-M, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol. 2014;1:e29911.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorburn AM, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol. 2014;114:091850. mol

    Google Scholar 

  14. Liu B, Sun T, Zhou Z, Du L. A systematic review on antitumor agents with 1, 3, 5-triazines. Med Chem. 2015;5:131–48.

    Google Scholar 

  15. Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, et al. 1, 3, 5-Triazines: a promising scaffold for anticancer drugs development. Eur J Med Chem. 2017;142:523–49.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar GJ, Bomma HS, Srihari E, Shrivastava S, Naidu V, Srinivas K, et al. Synthesis and anticancer activity of some new s-triazine derivatives. Med Chem Res. 2013;22:5973–81.

    Article  Google Scholar 

  17. Kumar GJ, Kumar SN, Thummuri D, Adari LBS, Naidu V, Srinivas K, et al. Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med Chem Res. 2015;24:3991–4001.

    Article  CAS  Google Scholar 

  18. Kumar GJ, Kumar SN, Thummuri D, LBS Adari, Naidu V, Srinivas K, et al. Erratum to: Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med Chem Res. 2017;26:3072–5.

    Article  CAS  Google Scholar 

  19. Yaguchi S-i, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst. 2006;98:545–56.

    Article  CAS  PubMed  Google Scholar 

  20. Welker ME, Kulik G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg Med Chem. 2013;21:4063–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterson EA, Andrews PS, Be X, Boezio AA, Bush TL, Cheng AC, et al. Discovery of triazine-benzimidazoles as selective inhibitors of mTOR. Bioorg Med Chem Lett. 2011;21:2064–70.

    Article  CAS  PubMed  Google Scholar 

  22. Ohkuma S, Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol. 1981;90:656–64.

    Article  CAS  PubMed  Google Scholar 

  23. De Duve C, De Barsy T, Poole B, Tulkens P. Lysosomotropic agents. Biochem Pharmacol. 1974;23:2495–531.

    Article  PubMed  Google Scholar 

  24. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell . 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.

    Article  CAS  PubMed  Google Scholar 

  26. Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015;282:4672–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ly JD, Grubb D, Lawen A. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 2003;8:115–28.

    Article  CAS  PubMed  Google Scholar 

  28. Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL, Chang JC. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 2016;376:249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boya P, Gonzalez-Polo R-A, Poncet D, Andreau K, Vieira HL, Roumier T, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003;22:3927.

    Article  CAS  PubMed  Google Scholar 

  30. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:a008722.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hata AN, Engelman JA, Faber AC. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015;5:475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Et Biophys Acta (BBA)-Rev Cancer. 2010;1806:220–9.

    Article  CAS  Google Scholar 

  33. Morissette G, Moreau E, René C, Marceau F. Massive cell vacuolization induced by organic amines such as procainamide. J Pharmacol Exp Ther. 2004;310:395–406.

    Article  CAS  PubMed  Google Scholar 

  34. Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981;90:665–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem. 2014;6:614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6:764.

    Article  CAS  Google Scholar 

  37. Kirkegaard T, Jäättelä M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009;1793:746–54.

    Article  CAS  PubMed  Google Scholar 

  38. Linder S, Shoshan MC. Lysosomes and endoplasmic reticulum: targets for improved, selective anticancer therapy. Drug Resist Updat. 2005;8:199–204.

    Article  CAS  PubMed  Google Scholar 

  39. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma X-H, Piao S, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA. 2012;109:8253–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, et al. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy. 2014;10:1895–905.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen C, Lu Y, Siu HM, Guan J, Zhu L, Zhang S, et al. Identification of novel vacuolin-1 analogues as autophagy inhibitors by virtual drug screening and chemical synthesis. Molecules. 2017;22:891.

    Article  PubMed Central  Google Scholar 

  42. Boya P, González-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han W, Sun J, Feng L, Wang K, Li D, Pan Q, et al. Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS ONE. 2011;6:e28491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alam MM, Kariya R, Kawaguchi A, Matsuda K, Kudo E, Okada S. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis. 2016;21:1191–201.

    Article  Google Scholar 

  45. Kim EL, Wüstenberg R, Rübsam A, Schmitz-Salue C, Warnecke G, Bücker E-M, et al. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro Oncol. 2010;12:389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Repnik U, Turk B. Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion. 2010;10:662–9.

    Article  CAS  PubMed  Google Scholar 

  47. De Castro M, Bunt G, Wouters F. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes. Cell Death Discov. 2016;2:16012.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lefort S, Joffre C, Kieffer Y, Givel A-M, Bourachot B, Zago G, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy. 2014;10:2122–42.

    Article  CAS  PubMed  Google Scholar 

  49. Jain K, Paranandi KS, Sridharan S, Basu A. Autophagy in breast cancer and its implications for therapy. Am J Cancer Res. 2013;3:251.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36:1619.

    Article  CAS  PubMed  Google Scholar 

  51. Chude CI, Amaravadi RK. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci. 2017;18:1279.

    Article  PubMed Central  Google Scholar 

  52. Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014;11:508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Endo S, Nakata K, Ohuchida K, Takesue S, Nakayama H, Abe T, et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology. 2017;152:1492–506. e24.

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem. 2014;289:17163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy & Immunol. 2012;42:145–53.

    Article  CAS  Google Scholar 

  56. Guggilapu SD, Lalita G, Reddy TS, Prajapti SK, Nagarsenkar A, Ramu S, et al. Synthesis of C5-tethered indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur J Med Chem. 2017;128:1–12.

    Article  CAS  PubMed  Google Scholar 

  57. Shrivastava S, Jeengar MK, Reddy VS, Reddy GB, Naidu V. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Exp Mol Pathol. 2015;98:313–27.

    Article  CAS  PubMed  Google Scholar 

  58. Shrivastava S, Kulkarni P, Thummuri D, Jeengar MK, Naidu V, Alvala M, et al. Piperlongumine, an alkaloid causes inhibition of PI3K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis. 2014;19:1148–64.

    Article  CAS  PubMed  Google Scholar 

  59. Ramya PS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, et al. Synthesis and biological evaluation of curcumin inspired imidazo [1, 2-a] pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem. 2018;143:216–31.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar D, Shankar S, Srivastava RK. Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol Cancer. 2013;12:171.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, et al. Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy. 2015;11:1849–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

GL and DT are thankful to Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, and Director of NIPER-Hyderabad and NIPER-Guwahati, for providing fellowship and research activity to the authors. We also acknowledge Dr M Lakshman, Sri Venkateshwara University College of Veterinary Sciences, for his help in processing and acquisition of transmission electron microscopy images. We thank Jaya Lakshmi, Veera Bhadra Swami, and Vasu Penugurti for their technical guidance and support.

Compliance with ethical standards

All the animal experimentation were carried out in compliance with guidelines of IAEC, NIPER-Hyderabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naidu G. M. Vegi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guntuku, L., Gangasani, J.K., Thummuri, D. et al. IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo. Oncogene 38, 581–595 (2019). https://doi.org/10.1038/s41388-018-0446-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0446-2

  • Springer Nature Limited

This article is cited by

Navigation