Skip to main content
Log in

Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice

  • Article
  • Published:
Neuropsychopharmacology Submit manuscript

Abstract

Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: D2R upregulation in NAc CINs increases delay discounting.
Fig. 2: D2R upregulation in NAc CINs does not alter probabilistic discounting.
Fig. 3: CIN D2R upregulation in NAc does not alter timing.
Fig. 4: Lack of CIN D2Rs decreases delay, but not probabilistic, discounting.

Similar content being viewed by others

References

  1. Ainslie G. Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull. 1975;82:463–96.

    CAS  PubMed  Google Scholar 

  2. Evenden JL, Ryan CN. The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl). 1996;128:161–70.

    CAS  PubMed  Google Scholar 

  3. Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchalian KM. Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: emerging evidence. Pharmacol Ther. 2012;134:287–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Patros CH, Alderson RM, Kasper LJ, Tarle SJ, Lea SE, Hudec KL. Choice-impulsivity in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a meta-analytic review. Clin Psychol Rev. 2016;43:162–74.

    PubMed  Google Scholar 

  5. Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Cogn Neuropsychiatry. 2007;12:213–21.

    PubMed  PubMed Central  Google Scholar 

  6. Weller RE, Cook EW, Avsar KB, Cox JE. Obese women show greater delay discounting than healthy-weight women. Appetite. 2008;51:563–69.

    PubMed  Google Scholar 

  7. Daugherty JR, Brase GL. Taking time to be healthy: Predicting health behaviors with delay discounting and time perspective. Pers Individ Dif. 2010;48:202–07.

    Google Scholar 

  8. Lempert KM, Steinglass JE, Pinto A, Kable JW, Simpson HB. Can delay discounting deliver on the promise of RDoC? Psychol Med. 2019;49:190–99.

    PubMed  Google Scholar 

  9. Kable JW, Glimcher PW. The neural correlates of subjective value during intertemporal choice. Nat Neurosci. 2007;10:1625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lempert KM, Speer ME, Delgado MR, Phelps EA. Positive autobiographical memory retrieval reduces temporal discounting. Soc Cogn Affect Neurosci. 2017;12:1584–93.

    PubMed  PubMed Central  Google Scholar 

  11. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001;292:2499–501.

    CAS  PubMed  Google Scholar 

  12. da Costa Araújo S, Body S, Hampson CL, Langley RW, Deakin JF, Anderson IM, et al. Effects of lesions of the nucleus accumbens core on inter-temporal choice: further observations with an adjusting-delay procedure. Behav Brain Res. 2009;202:272–7.

    PubMed  Google Scholar 

  13. Moschak TM, Mitchell SH. Partial inactivation of nucleus accumbens core decreases delay discounting in rats without affecting sensitivity to delay or magnitude. Behav Brain Res. 2014;268:159–68.

    PubMed  PubMed Central  Google Scholar 

  14. Roesch MR, Calu DJ, Schoenbaum G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci. 2007;10:1615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi S, Schultz W. Influence of reward delays on responses of dopamine neurons. J Neurosci. 2008;28:7837–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Joutsa J, Voon V, Johansson J, Niemelä S, Bergman J, Kaasinen V. Dopaminergic function and intertemporal choice. Transl Psychiatry. 2015;5:e491–e91.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Winstanley CA, Theobald DE, Dalley JW, Robbins TW. Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology. 2005;30:669–82.

    CAS  PubMed  Google Scholar 

  18. Day JJ, Jones JL, Wightman RM, Carelli RM. Phasic Nucleus Accumbens Dopamine Release Encodes Effort- and Delay-Related Costs. Biol Psychiatry. 2010;68:306–09.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM. Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol Psychiatry. 2015;77:903–11.

    PubMed  Google Scholar 

  20. Wade TR, de Wit H, Richards JB. Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl). 2000;150:90–101.

    CAS  PubMed  Google Scholar 

  21. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barlow RL, Gorges M, Wearn A, Niessen HG, Kassubek J, Dalley JW, et al. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well as limbic corticostriatal connectivity. Int J Neuropsychopharmacol. 2018;21:705–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int. 2019;125:35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bolam JP, Wainer BH, Smith AD. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience. 1984;12:711–8.

    CAS  PubMed  Google Scholar 

  25. Matamales M, Gotz J, Bertran-Gonzalez J. Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum. PLoS One. 2016;11:e0157682.

    PubMed  PubMed Central  Google Scholar 

  26. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci. 1998;10:3020–3.

    CAS  PubMed  Google Scholar 

  27. Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron. 2006;50:443–52.

    CAS  PubMed  Google Scholar 

  28. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E, et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol Psychiatry. 2020;25:3241–55.

    CAS  PubMed  Google Scholar 

  30. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron. 2012;75:58–64.

    CAS  PubMed  Google Scholar 

  31. Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, et al. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell reports. 2012;2:33–41.

    CAS  PubMed  Google Scholar 

  32. Liu C, Cai X, Ritzau-Jost A, Kramer PF, Li Y, Khaliq ZM, et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science. 2022;375:1378–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Aosaki T, Graybiel AM, Kimura M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science. 1994;265:412–5.

    CAS  PubMed  Google Scholar 

  34. Gallo EF, Greenwald J, Yeisley J, Teboul E, Martyniuk KM, Villarin JM, et al. Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol Psychiatry. 2022;27:1502–14.

    CAS  PubMed  Google Scholar 

  35. Martyniuk KM, Torres-Herraez A, Lowes DC, Rubinstein M, Labouesse MA, Kellendonk C. Dopamine D2Rs coordinate cue-evoked changes in striatal acetylcholine levels. eLife. 2022;11:e76111.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolokotroni KZ, Rodgers RJ, Harrison AA. Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology (Berl). 2011;217:455–73.

    CAS  PubMed  Google Scholar 

  37. Dallery J, Locey ML. Effects of acute and chronic nicotine on impulsive choice in rats. Behav Pharmacol. 2005;16:15–23.

    CAS  PubMed  Google Scholar 

  38. Ozga JE, Anderson KG. Reduction in delay discounting due to nicotine and its attenuation by cholinergic antagonists in Lewis and Fischer 344 rats. Psychopharmacology (Berl). 2018;235:155–68.

    CAS  PubMed  Google Scholar 

  39. Mendez IA, Gilbert RJ, Bizon JL, Setlow B. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats. Psychopharmacology (Berl). 2012;224:489–99.

    CAS  PubMed  Google Scholar 

  40. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bello EP, Mateo Y, Gelman DM, Noain D, Shin JH, Low MJ, et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci. 2011;14:1033–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nautiyal KM, Wall MM, Wang S, Magalong VM, Ahmari SE, Balsam PD, et al. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology. 2017;42:1182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ward RD, Kellendonk C, Simpson EH, Lipatova O, Drew MR, Fairhurst S, et al. Impaired timing precision produced by striatal D2 receptor overexpression is mediated by cognitive and motivational deficits. Behav Neurosci. 2009;123:720–30.

    PubMed  PubMed Central  Google Scholar 

  44. Drew MR, Simpson EH, Kellendonk C, Herzberg WG, Lipatova O, Fairhurst S, et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci. 2007;27:7731–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinkston JW, Lamb RJ. Delay discounting in C57BL/6J and DBA/2J mice: adolescent-limited and life-persistent patterns of impulsivity. Behav Neurosci. 2011;125:194–201.

    PubMed  PubMed Central  Google Scholar 

  46. Cardinal RN. Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw. 2006;19:1277–301.

    PubMed  Google Scholar 

  47. Richards JB, Zhang L, Mitchell SH, de Wit H. Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav. 1999;71:121–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McClure J, Podos J, Richardson H. Isolating the delay component of impulsive choice in adolescent rats. Front Integr Neurosci. 2014;8:1–9.

  49. Buhusi CV, Meck WH. Timing for the absence of a stimulus: the gap paradigm reversed. J Exp Psychol Anim Behav Process. 2000;26:305–22.

    CAS  PubMed  Google Scholar 

  50. Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1086.

    PubMed  PubMed Central  Google Scholar 

  51. Kharkwal G, Brami-Cherrier K, Lizardi-Ortiz JE, Nelson AB, Ramos M, Del Barrio D, et al. Parkinsonism driven by antipsychotics originates from dopaminergic control of striatal cholinergic interneurons. Neuron. 2016;91:67–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Augustin SM, Chancey JH, Lovinger DM. Dual dopaminergic regulation of corticostriatal plasticity by cholinergic interneurons and indirect pathway medium spiny neurons. Cell reports. 2018;24:2883–93.

    CAS  PubMed  Google Scholar 

  53. Bocarsly ME, da Silva e Silva D, Kolb V, Luderman KD, Shashikiran S, Rubinstein M, et al. A mechanism linking two known vulnerability factors for alcohol abuse: heightened alcohol stimulation and low striatal dopamine D2 receptors. Cell reports. 2019;29:1147–63.e5.

    CAS  PubMed  Google Scholar 

  54. Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF, Bannerman DM. Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology (Berl). 2005;179:587–96.

    CAS  PubMed  Google Scholar 

  55. Koffarnus MN, Newman AH, Grundt P, Rice KC, Woods JH. Effects of selective dopaminergic compounds on a delay-discounting task. Behav Pharmacol. 2011;22:300–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ. Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry. 2006;60:66–73.

    PubMed  Google Scholar 

  57. Winstanley CA, Theobald DE, Cardinal RN, Robbins TW. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci. 2004;24:4718–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernosky-Smith KA, Qiu YY, Feja M, Lee YB, Loughlin B, Li JX, et al. Ventral tegmental area D2 receptor knockdown enhances choice impulsivity in a delay-discounting task in rats. Behav Brain Res. 2018;341:129–34.

    CAS  PubMed  Google Scholar 

  59. Zeeb FD, Floresco SB, Winstanley CA. Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology (Berl). 2010;211:87–98.

    CAS  PubMed  Google Scholar 

  60. Pardey MC, Kumar NN, Goodchild AK, Cornish JL. Catecholamine receptors differentially mediate impulsive choice in the medial prefrontal and orbitofrontal cortex. J Psychopharmacol. 2013;27:203–12.

    CAS  PubMed  Google Scholar 

  61. Larkin JD, Jenni NL, Floresco SB. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology (Berl). 2016;233:121–36.

    CAS  PubMed  Google Scholar 

  62. Yates JR, Bardo MT. Effects of intra-accumbal administration of dopamine and ionotropic glutamate receptor drugs on delay discounting performance in rats. Behav Neurosci. 2017;131:392–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li Y, Zuo Y, Yu P, Ping X, Cui C. Role of basolateral amygdala dopamine D2 receptors in impulsive choice in acute cocaine-treated rats. Behav Brain Res. 2015;287:187–95.

    CAS  PubMed  Google Scholar 

  64. Field M, Santarcangelo M, Sumnall H, Goudie A, Cole J. Delay discounting and the behavioural economics of cigarette purchases in smokers: the effects of nicotine deprivation. Psychopharmacology (Berl). 2006;186:255–63.

    CAS  PubMed  Google Scholar 

  65. Bickel WK, Odum AL, Madden GJ. Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers. Psychopharmacology (Berl). 1999;146:447–54.

    CAS  PubMed  Google Scholar 

  66. Adriani W, Laviola G. Elevated levels of impulsivity and reduced place conditioning with d-amphetamine: two behavioral features of adolescence in mice. Behav Neurosci. 2003;117:695–703.

    CAS  PubMed  Google Scholar 

  67. Tanno T, Maguire DR, Henson C, France CP. Effects of amphetamine and methylphenidate on delay discounting in rats: interactions with order of delay presentation. Psychopharmacology (Berl). 2014;231:85–95.

    CAS  PubMed  Google Scholar 

  68. Maguire DR, Henson C, France CP. Effects of amphetamine on delay discounting in rats depend upon the manner in which delay is varied. Neuropharmacology. 2014;87:173–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cardinal RN, Robbins TW, Everitt BJ. The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl). 2000;152:362–75.

    CAS  PubMed  Google Scholar 

  70. Orsini CA, Mitchell MR, Heshmati SC, Shimp KG, Spurrell MS, Bizon JL, et al. Effects of nucleus accumbens amphetamine administration on performance in a delay discounting task. Behav Brain Res. 2017;321:130–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Slezak JM, Anderson KG. Effects of variable training, signaled and unsignaled delays, and d-amphetamine on delay-discounting functions. Behav Pharmacol. 2009;20:424–36.

    CAS  PubMed  Google Scholar 

  72. St Onge JR, Floresco SB. Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology. 2009;34:681–97.

    Google Scholar 

  73. Cardinal RN, Howes NJ. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci. 2005;6:37.

    PubMed  PubMed Central  Google Scholar 

  74. Green L, Myerson J, Ostaszewski P. Amount of reward has opposite effects on the discounting of delayed and probabilistic outcomes. J Exp Psychol Learn Mem Cogn. 1999;25:418–27.

    CAS  PubMed  Google Scholar 

  75. Acheson A, Farrar AM, Patak M, Hausknecht KA, Kieres AK, Choi S, et al. Nucleus accumbens lesions decrease sensitivity to rapid changes in the delay to reinforcement. Behav Brain Res. 2006;173:217–28.

    PubMed  PubMed Central  Google Scholar 

  76. Mitchell SH. Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology (Berl). 1999;146:455–64.

    CAS  PubMed  Google Scholar 

  77. Johnson MW, Johnson PS, Herrmann ES, Sweeney MM. Delay and probability discounting of sexual and monetary outcomes in individuals with cocaine use disorders and matched controls. PLoS One. 2015;10:e0128641.

    PubMed  PubMed Central  Google Scholar 

  78. Cox DJ, Dolan SB, Johnson P, Johnson MW. Delay and probability discounting in cocaine use disorder: Comprehensive examination of money, cocaine, and health outcomes using gains and losses at multiple magnitudes. Exp Clin Psychopharmacol. 2020;28:724–38.

    CAS  PubMed  Google Scholar 

  79. Mendez IA, Simon NW, Hart N, Mitchell MR, Nation JR, Wellman PJ, et al. Self-administered cocaine causes long-lasting increases in impulsive choice in a delay discounting task. Behav Neurosci. 2010;124:470–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zalocusky KA, Ramakrishnan C, Lerner TN, Davidson TJ, Knutson B, Deisseroth K. Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature. 2016;531:642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Steele CC, Peterson JR, Marshall AT, Stuebing SL, Kirkpatrick K. Nucleus accumbens core lesions induce sub-optimal choice and reduce sensitivity to magnitude and delay in impulsive choice tasks. Behav Brain Res. 2018;339:28–38.

    PubMed  Google Scholar 

  82. Balleine B, Killcross S. Effects of ibotenic acid lesions of the Nucleus Accumbens on instrumental action. Behav Brain Res. 1994;65:181–93.

    CAS  PubMed  Google Scholar 

  83. Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G. Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci. 2007;27:245–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wittmann M, Paulus MP. Decision making, impulsivity and time perception. Trends Cogn Sci. 2008;12:7–12.

    PubMed  Google Scholar 

  85. Baumann AA, Odum AL. Impulsivity, risk taking, and timing. Behav Processes. 2012;90:408–14.

    PubMed  PubMed Central  Google Scholar 

  86. Marshall AT, Smith AP, Kirkpatrick K. Mechanisms of impulsive choice: I. Individual differences in interval timing and reward processing. J Exp Anal Behav. 2014;102:86–101.

    PubMed  Google Scholar 

  87. Meck WH. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 2006;1109:93–107.

    CAS  PubMed  Google Scholar 

  88. Buhusi CV, Meck WH. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci. 2002;116:291–7.

    CAS  PubMed  Google Scholar 

  89. Balci F, Ludvig EA, Abner R, Zhuang X, Poon P, Brunner D. Motivational effects on interval timing in dopamine transporter (DAT) knockdown mice. Brain Res. 2010;1325:89–99.

    CAS  PubMed  Google Scholar 

  90. Roesch M, Bryden D. Impact of size and delay on neural activity in the rat limbic corticostriatal system. Front Neurosci. 2011;5:1–13.

  91. Hori Y, Mimura K, Nagai Y, Fujimoto A, Oyama K, Kikuchi E, et al. Single caudate neurons encode temporally discounted value for formulating motivation for action. eLife. 2021;10:e61248.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cai X, Kim S, Lee D. Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron. 2011;69:170–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Anokhin AP, Grant JD, Mulligan RC, Heath AC. The genetics of impulsivity: evidence for the heritability of delay discounting. Biol Psychiatry. 2015;77:887–94.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank David D’Onofrio, Eric Teboul, Emily Huegler, and Daphne Baker for technical assistance, Katherine Nautiyal for input on behavioral design and analysis, and Christoph Kellendonk and Jonathan Javitch for sharing the D2R viral vector.

Funding

This work was supported by K01 MH107648, R01 DA055018 and Fordham University Faculty Research Grants to EFG; JC was supported by a Len Blavatnik STEM Research Fellowship and Fordham Undergraduate Research Grant; PDB and BA were supported by R01 MH068073.

Author information

Authors and Affiliations

Authors

Contributions

JC, JY, RES, JRF and BA and EFG conducted the experiments and data analysis. EFG and JC wrote the manuscript. PDB and BA edited the manuscript. EFG and PDB designed the experiments. EFG supervised the experiments and data analysis.

Corresponding author

Correspondence to Eduardo F. Gallo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallaro, J., Yeisley, J., Akdoǧan, B. et al. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacol. 48, 1309–1317 (2023). https://doi.org/10.1038/s41386-023-01608-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01608-1

  • Springer Nature Switzerland AG

This article is cited by

Navigation