Skip to main content
Log in

Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats

  • Article
  • Published:
Neuropsychopharmacology Submit manuscript

Abstract

Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Chronic electronic footshock administered daily at the time of self-administration induces a persistent escalation of cocaine intake.
Fig. 2: Cannabinoid receptor type 1 antagonism in the nucleus accumbens shell and ventral tegmental area attenuate cocaine intake in rats that underwent stress-induced escalation of cocaine intake.
Fig. 3: Cocaine self-administration increases cannabinoid receptor type 1 binding in the ventral tegmental area but not nucleus accumbens shell.
Fig. 4: A history of stress-induced escalation of cocaine intake results in increased cocaine-induced reinstatement that is dependent upon CB1R activation.

Similar content being viewed by others

References

  1. Kosten TR, Kleber HD. Differential diagnosis of psychiatric comorbidity in substance abusers. J Subst Abus Treat. 1988;5:201–6.

    Article  CAS  Google Scholar 

  2. Back S, Dansky BS, Coffey SF, Saladin ME, Sonne S, Brady KT. Cocaine dependence with and without posttraumatic stress disorder: a comparison of substance use, trauma history and psychiatric comorbidity. Am J Addict. 2000;9:51–62.

    Article  CAS  PubMed  Google Scholar 

  3. Mahoney JJ, Newton TF, Omar Y, Ross EL, Garza RDL. The relationship between lifetime stress and addiction severity in cocaine-dependent participants. Eur Neuropsychopharmacol. 2013;23:351–7.

    Article  CAS  PubMed  Google Scholar 

  4. Wallace BC. Psychological and environmental determinants of relapse in crack cocaine smokers. J Subst Abus Treat. 1989;6:95–106.

    Article  CAS  Google Scholar 

  5. Preston KL, Epstein DH. Stress in the daily lives of cocaine and heroin users: relationship to mood, craving, relapse triggers, and cocaine use. Psychopharmacol (Berl). 2011;218:29–37.

    Article  CAS  Google Scholar 

  6. Panlilio LV, Stull SW, Bertz JW, Burgess-Hull A, Lanza ST, Curtis BL, et al. Beyond abstinence and relapse II: momentary relationships between stress, craving, and lapse within clusters of patients with similar patterns of drug use. Psychopharmacol (Berl). 2021;238:1513–29.

    Article  CAS  Google Scholar 

  7. Waldrop AE, Back SE, Brady KT, Upadhyaya HP, McRae AL, Saladin ME. Daily stressor sensitivity, abuse effects, and cocaine use in cocaine dependence. Addict Behav. 2007;32:3015–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Back SE, Hartwell K, DeSantis SM, Saladin M, McRae-Clark A, Price KL, et al. Reactivity to laboratory stress provocation predicts relapse to cocaine. Drug Alcohol Depend. 2010;106:21–27.

    Article  CAS  PubMed  Google Scholar 

  9. Panlilio LV, Stull SW, Kowalczyk WJ, Phillips KA, Schroeder JR, Bertz JW, et al. Stress, craving and mood as predictors of early dropout from opioid agonist therapy. Drug Alcohol Depend. 2019;202:200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banducci AN, Bujarski SJ, Bonn-Miller M, Patel A, Connolly KM. The impact of intolerance of emotional distress and uncertainty on veterans with co-occurring PTSD and substance use disorders. J Anxiety Disord. 2016;41:73–81.

    Article  PubMed  Google Scholar 

  11. Sinha R, Catapano D, O’Malley S. Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacol (Berl). 1999;142:343–51.

    Article  CAS  Google Scholar 

  12. Sinha R, Fuse T, Aubin L-, O’Malley SS. Psychological stress, drug-related cues and cocaine craving. Psychopharmacol (Berl). 2000;152:140–8.

    Article  CAS  Google Scholar 

  13. Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry. 2006;63:324–31.

    Article  PubMed  Google Scholar 

  14. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282:298–300.

    Article  CAS  PubMed  Google Scholar 

  15. Mantsch JR, Yuferov V, Mathieu-Kia A, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacol (Berl). 2004;175:26–36.

    Article  CAS  Google Scholar 

  16. Mantsch JR, Katz ES. Elevation of glucocorticoids is necessary but not sufficient for the escalation of cocaine self-administration by chronic electric footshock stress in rats. Neuropsychopharmacology. 2007;32:367–76.

    Article  CAS  PubMed  Google Scholar 

  17. Mantsch JR, Baker DA, Serge JP, Hoks MA, Francis DM, Katz ES. Surgical adrenalectomy with diurnal corticosterone replacement slows escalation and prevents the augmentation of cocaine-induced reinstatement in rats self-administering cocaine under long-access conditions. Neuropsychopharmacology. 2008;33:814–26.

    Article  CAS  PubMed  Google Scholar 

  18. Graf EN, Hoks MA, Baumgardner J, Sierra J, Vranjkovic O, Bohr C, et al. Adrenal activity during repeated long-access cocaine self-administration is required for later CRF-Induced and CRF-dependent stressor-induced reinstatement in rats. Neuropsychopharmacology. 2011;36:1444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill MN, Ho W-V, Meier SE, Gorzalka BB, Hillard CJ. Chronic corticosterone treatment increases the endocannabinoid 2-arachidonylglycerol in the rat amygdala. Eur J Pharm. 2005;528:99–102.

    Article  CAS  Google Scholar 

  21. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci. 2009;106:4888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS. Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology. 2010;35:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ, Lee TT-Y, et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci. 2011;31:10506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McReynolds JR, Doncheck EM, Li Y, Vranjkovic O, Graf EN, Ogasawara D, et al. Stress promotes drug seeking through glucocorticoid-dependent endocannabinoid mobilization in the prelimbic cortex. Biol Psychiatry. 2018;84:85–94.

    Article  CAS  PubMed  Google Scholar 

  25. Morena M, Patel S, Bains JS, Hill MN. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology. 2016;41:80–102.

    Article  CAS  PubMed  Google Scholar 

  26. deRoon-Cassini T, Stollenwerk TM, Beatka M, Hillard CJ. Meet your stress management professionals: the endocannabinoids. Trends Mol Med. 2020;26:953–68.

    Article  PubMed  PubMed Central  Google Scholar 

  27. López-Moreno JA, Echeverry-Alzate V, Bühler K. The genetic basis of the endocannabinoid system and drug addiction in humans. J Psychopharmacol. 2012;26:133–43.

    Article  PubMed  Google Scholar 

  28. Vries TJD, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, et al. A cannabinoid mechanism in relapse to cocaine seeking. Nat Med. 2001;7:1151–4.

    Article  PubMed  Google Scholar 

  29. Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci. 2007;27:3695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adamczyk P, McCreary AC, Przegalinski E, Mierzejewski P, Bienkowski P, Filip M. The effects of fatty acid amide hydrolase inhibitors on maintenance of cocaine and food self-administration and on reinstatement of cocaine-seeking and food-taking behavior in rats. J Physiol pharmacology: Off J Pol Physiol Soc PMID - 19826190. 2008;60:119–25.

    Google Scholar 

  31. Orio L, Edwards S, George O, Parsons LH, Koob GF. A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci. 2009;29:4846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roberts DCS, Koob GF. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav. 1982;17:901–4.

    Article  CAS  PubMed  Google Scholar 

  33. Caine SB, Heinrichs SC, Coffin VL, Koob GF. Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res. 1995;692:47–56.

    Article  CAS  PubMed  Google Scholar 

  34. Carlezon WA, Devine DP, Wise RA. Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacol (Berl). 1995;122:194–7.

    Article  CAS  Google Scholar 

  35. Pontieri FE, Tanda G, Chiara GD. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci. 1995;92:12304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci. 2004;24:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riegel AC, Lupica CR. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J Neurosci. 2004;24:11070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci. 2007;27:791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan B, Hillard CJ, Liu QS. D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci. 2008;28:14018–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oleson EB, Beckert MV, Morra JT, Lansink CS, Cachope R, Abdullah RA, et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron. 2012;73:360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mateo Y, Johnson KA, Covey DP, Atwood BK, Wang H, Zhang S, et al. Endocannabinoid actions on cortical terminals orchestrate local modulation of dopamine release in the nucleus accumbens. Neuron. 2017;96:1112–26.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Sun D, Pan B, Roberts CJ, Sun X, Hillard CJ, et al. Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress. Neuropsychopharmacology. 2010;35:2249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang H, Treadway T, Covey DP, Cheer JF, Lupica CR. Cocaine-induced endocannabinoid mobilization in the ventral tegmental area. Cell Rep. 2015;12:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tung L, Lu G, Lee Y, Yu L, Lee H, Leishman E, et al. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun. 2016;7:12199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegaliński E. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res. 2012;1444:45–54.

    Article  CAS  PubMed  Google Scholar 

  46. Soria G, Mendizábal V, Touriño C, Robledo P, Ledent C, Parmentier M, et al. Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology. 2005;30:1670–80.

    Article  CAS  PubMed  Google Scholar 

  47. Cossu G, Ledent C, Fattore L, Imperato A, Böhme GA, Parmentier M, et al. Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res. 2001;118:61–65.

    Article  CAS  PubMed  Google Scholar 

  48. Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, et al. Differential control of cocaine self-administration by GABAergic and glutamatergic CB1 cannabinoid receptors. Neuropsychopharmacology. 2016;41:2192–205.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411.

    Article  CAS  PubMed  Google Scholar 

  50. Pickel VM, Chan J, Kash TL, Rodríguez JJ, MacKie K. Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience. 2004;127:101–12.

    Article  CAS  PubMed  Google Scholar 

  51. Pickel VM, Chan J, Kearn CS, Mackie K. Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J Comp Neurol. 2006;495:299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winters BD, Krüger JM, Huang X, Gallaher ZR, Ishikawa M, Czaja K, et al. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci USA. 2012;109:2717.

    Article  Google Scholar 

  53. Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA. Two brain sites for cannabinoid reward. J Neurosci. 2006;26:4901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan B, Zhong P, Sun D, Liu QS. Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects. J Neurosci. 2011;31:11244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tong J, Liu X, Vickstrom C, Li Y, Yu L, Lu Y, et al. The Epac-Phospholipase Cε pathway regulates endocannabinoid signaling and cocaine-induced disinhibition of ventral tegmental area dopamine neurons. J Neurosci. 2017;37:3030–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Engi SA, Beebe EJ, Ayvazian VM, Cruz FC, Cheer JF, Wenzel JM, et al. Cocaine-induced increases in motivation require 2-arachidonoylglycerol mobilization and CB1 receptor activation in the ventral tegmental area. Neuropharmacology. 2021;193:108625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hillard CJ, Edgemond WS, Campbell WB. Characterization of ligand binding to the cannabinoid receptor of rat brain membranes using a novel method: application to anandamide. J neurochemistry. 1995;64:677–83.

    Article  CAS  Google Scholar 

  58. Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, et al. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacol (N. Y, N. Y). 2005;30:508–15.

    Article  CAS  Google Scholar 

  59. Hill MN, Carrier EJ, Ho W-V, Shi L, Patel S, Gorzalka BB, et al. Prolonged glucocorticoid treatment decreases cannabinoid CB1 receptor density in the hippocampus. Hippocampus. 2008;18:221–6.

    Article  CAS  PubMed  Google Scholar 

  60. McLaughlin RJ, Hill MN, Dang SS, Wainwright SR, Galea LAM, Hillard CJ, et al. Upregulation of CB1 receptor binding in the ventromedial prefrontal cortex promotes proactive stress-coping strategies following chronic stress exposure. Behav Brain Res. 2013;237:333–7.

    Article  CAS  PubMed  Google Scholar 

  61. Adamczyk P, Faron-Górecka A, Kuśmider M, Dziedzicka-Wasylewska M, Papp M, Filip M. Long-lasting increase in [3H]CP55,940 binding to CB1 receptors following cocaine self-administration and its withdrawal in rats. Brain Res. 2012;1451:34–43.

    Article  CAS  PubMed  Google Scholar 

  62. Castro DC, Berridge KC. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci. 2014;34:4239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jong JWD, Fraser KM, Lammel S. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? Annu Rev Neurosci. 2022;45:109–29.

    Article  PubMed  Google Scholar 

  64. Sanchez-Catalan M, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience. 2014;282:198–216.

    Article  CAS  PubMed  Google Scholar 

  65. Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacol (Berl). 2015;233:163–86.

    Article  Google Scholar 

  66. Castro DC, Berridge KC. Advances in the neurobiological bases for food ‘liking’ versus ‘wanting’. Physiol Behav. 2014;136:22–30.

    Article  CAS  PubMed  Google Scholar 

  67. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology. 2007;32:2267–78.

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell MR, Berridge KC, Mahler SV. Endocannabinoid-enhanced “liking” in nucleus accumbens shell hedonic hotspot requires endogenous opioid signals. Cannabis Cannabinoid Res. 2018;3:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reed MD, Hildebrand DGC, Santangelo G, Moffa A, Pira AS, Rycyna L, et al. Assessing contributions of nucleus accumbens shell subregions to reward-seeking behavior. Drug Alcohol Depend. 2015;153:369–73.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee DY, Guttilla M, Fung KD, McFeron S, Yan J, Ranaldi R. Rostral–caudal differences in the effects of intra-VTA muscimol on cocaine self-administration. Pharmacol Biochem Behav. 2007;86:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodd ZA, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ. Intracranial self-administration of cocaine within the posterior ventral tegmental area of wistar rats: evidence for involvement of serotonin-3 receptors and dopamine neurons. J Pharm Exp Ther. 2005;313:134–45.

    Article  CAS  Google Scholar 

  72. Soderman AR, Unterwald EM. Cocaine reward and hyperactivity in the rat: sites of mu opioid receptor modulation. Neuroscience. 2008;154:1506–16.

    Article  CAS  PubMed  Google Scholar 

  73. Brischoux F, Chakraborty S, Brierley DI, Ungless MA. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci. 2009;106:4894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jong JWD, Afjei SA, Dorocic IP, Peck JR, Liu C, Kim CK, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron. 2019;101:133–51.e7.

    Article  PubMed  Google Scholar 

  75. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci. 2001;21:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han X, Liang Y, Hempel B, Jordan CJ, Shen H, Bi G, et al. Cannabinoid CB1 receptors are expressed in a subset of dopamine neurons and underlie cannabinoid-induced aversion, hypoactivity, and anxiolytic effects in mice. J Neurosci. 2022;43:373–85.

    Article  CAS  PubMed  Google Scholar 

  77. Secci ME, Mascia P, Sagheddu C, Beggiato S, Melis M, Borelli AC, et al. Astrocytic mechanisms involving kynurenic acid control Δ9-tetrahydrocannabinol-induced increases in glutamate release in brain reward-processing areas. Mol Neurobiol. 2019;56:3563–75.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang L, Zhou Y, Yu Z, Zhang X, Shi J, Shen H. Restoring glutamate homeostasis in the nucleus accumbens via endocannabinoid-mimetic drug prevents relapse to cocaine seeking behavior in rats. Neuropsychopharmacology. 2021;46:970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gessa GL, Melis M, Muntoni AL, Diana M. Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharm. 1998;341:39–44.

    Article  CAS  Google Scholar 

  80. Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci. 2004;24:4393–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hernandez G, Oleson EB, Gentry RN, Abbas Z, Bernstein DL, Arvanitogiannis A, et al. Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry. 2014;75:487–98.

    Article  CAS  PubMed  Google Scholar 

  82. Solinas M, Justinova Z, Goldberg SR, Tanda G. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem. 2006;98:408–19.

    Article  CAS  PubMed  Google Scholar 

  83. Li X, Hoffman AF, Peng XQ, Lupica CR, Gardner EL, Xi ZX. Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacol (Berl). 2009;204:1–11.

    Article  CAS  Google Scholar 

  84. Szabo B, Siemes S, Wallmichrath I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci. 2002;15:2057–61.

    Article  PubMed  Google Scholar 

  85. Wang R, Hausknecht KA, Gancarz-Kausch A, Oubraim S, Shen RY, Haj-Dahmane S. Cocaine self-administration abolishes endocannabinoid-mediated long-term depression of glutamatergic synapses in the ventral tegmental area. Eur J Neurosci. 2020;52:4517–24.

    Article  PubMed  Google Scholar 

  86. Manzoni OJ, Bockaert J. Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharm. 2001;412:3.

    Article  Google Scholar 

  87. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA. 2002;99:8384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manz KM, Ghose D, Turner BD, Taylor A, Becker J, Grueter CA, et al. Calcium-permeable AMPA receptors promote endocannabinoid signaling at parvalbumin interneuron synapses in the nucleus accumbens core. Cell Rep. 2020;32:107971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fourgeaud L, Mato S, Bouchet D, Hémar A, Worley PF, Manzoni OJ. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci. 2004;24:6939–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conrad KL, McCutcheon JE, Cotterly LM, Ford KA, Beales M, Marinelli M. Persistent increases in cocaine-seeking behavior after acute exposure to cold swim stress. Biol Psychiatry. 2010;68:303–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ball KT, Stone E, Best O, Collins T, Edson H, Hagan E, et al. Chronic restraint stress during withdrawal increases vulnerability to drug priming-induced cocaine seeking via a dopamine D1-like receptor-mediated mechanism. Drug Alcohol Depend. 2018;187:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Glynn RM, Rosenkranz JA, Wolf ME, Caccamise A, Shroff F, Smith AB, et al. Repeated restraint stress exposure during early withdrawal accelerates incubation of cue-induced cocaine craving. Addict Biol. 2018;23:80–89.

    Article  CAS  PubMed  Google Scholar 

  93. Garcia-Keller C, Smiley C, Monforton C, Melton S, Kalivas PW, Gass J. N-Acetylcysteine treatment during acute stress prevents stress-induced augmentation of addictive drug use and relapse. Addict Biol. 2020;25:e12798.

    Article  CAS  PubMed  Google Scholar 

  94. Schwendt M, Shallcross J, Hadad NA, Namba MD, Hiller H, Wu L, et al. A novel rat model of comorbid PTSD and addiction reveals intersections between stress susceptibility and enhanced cocaine seeking with a role for mGlu5 receptors. Transl Psychiatry. 2018;8:209.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sutton MA, Karanian DA, Self DW. Factors that determine a propensity for cocaine-seeking behavior during abstinence in rats. Neuropsychopharmacology. 2000;22:626–41.

    Article  CAS  PubMed  Google Scholar 

  96. Baker DA, Tran-Nguyen T, Fuchs RA, Neisewander JL. Influence of individual differences and chronic fluoxetine treatment on cocaine-seeking behavior in rats. Psychopharmacol (Berl). 2001;155:18–26.

    Article  CAS  Google Scholar 

  97. Xi ZX, Gilbert JG, Peng XQ, Pak AC, Li X, Gardner EL. Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. J Neurosci. 2006;26:8531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McReynolds JR, Doncheck EM, Vranjkovic O, Ganzman GS, Baker DA, Hillard CJ, et al. CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacol (Berl). 2016;233:99–109.

    Article  CAS  Google Scholar 

  99. Kupferschmidt DA, Klas PG, Erb S. Cannabinoid CB1 receptors mediate the effects of corticotropin-releasing factor on the reinstatement of cocaine seeking and expression of cocaine-induced behavioural sensitization. Br J Pharm. 2012;167:196–206.

    Article  CAS  Google Scholar 

  100. Ward SJ, Rosenberg M, Dykstra LA, Walker EA. The CB1 antagonist rimonabant (SR141716) blocks cue-induced reinstatement of cocaine seeking and other context and extinction phenomena predictive of relapse. Drug Alcohol Depend. 2009;105:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doncheck EM, Liddiard GT, Konrath CD, Liu X, Yu L, Urbanik LA, et al. Sex, stress, and prefrontal cortex: influence of biological sex on stress-promoted cocaine seeking. Neuropsychopharmacology. 2020;45:1974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Craft RM, Marusich JA, Wiley JL. Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci. 2013;92:476–81.

    Article  CAS  PubMed  Google Scholar 

  103. Ney LJ, Matthews A, Bruno R, Felmingham KL. Modulation of the endocannabinoid system by sex hormones: Implications for posttraumatic stress disorder. Neurosci Biobehav Rev. 2018;94:302–20.

    Article  CAS  PubMed  Google Scholar 

  104. Reich CG, Taylor ME, McCarthy MM. Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res. 2009;203:264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peterson BM, Martinez LA, Meisel RL, Mermelstein PG. Estradiol impacts the endocannabinoid system in female rats to influence behavioral and structural responses to cocaine. Neuropharmacology. 2016;110:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Back SE, Brady KT, Jackson JL, Salstrom S, Zinzow H. Gender differences in stress reactivity among cocaine-dependent individuals. Psychopharmacol (Berl). 2005;180:169–76.

    Article  CAS  Google Scholar 

  107. Covington HE 3rd, Miczek KA. Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine self-administration “binges”. Psychopharmacol (Berl). 2001;158:388–98.

    Article  CAS  Google Scholar 

  108. Quadros IM, Miczek KA. Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacol (Berl). 2009;206:109–20.

    Article  CAS  Google Scholar 

  109. Comings DE, Muhleman D, Gade R, Johnson P, Verde R, Saucier G, et al. Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol Psychiatry. 1997;2:161–8.

    Article  CAS  PubMed  Google Scholar 

  110. Ballon N, Leroy S, Roy C, Bourdel MC, Charles-Nicolas A, Krebs MO, et al. (AAT)n repeat in the cannabinoid receptor gene (CNR1): association with cocaine addiction in an African-Caribbean population. Pharmacogenomics J. 2006;6:126–30.

    Article  CAS  PubMed  Google Scholar 

  111. Clarke TK, Bloch PJ, Ambrose-Lanci L, Ferraro TN, Berrettini WH, Kampman KM, et al. Further evidence for association of polymorphisms in the CNR1 gene with cocaine addiction: confirmation in an independent sample and meta-analysis. Addict Biol. 2013;18:702–8.

    Article  CAS  PubMed  Google Scholar 

  112. Zuo L, Kranzler HR, Luo X, Yang BZ, Weiss R, Brady K, et al. Interaction between two independent CNR1 variants increases risk for cocaine dependence in European Americans: a replication study in family-based sample and population-based sample. Neuropsychopharmacology. 2009;34:1504–13.

    Article  CAS  PubMed  Google Scholar 

  113. Herman AI, Kranzler HR, Cubells JF, Gelernter J, Covault J. Association study of the CNR1 gene exon 3 alternative promoter region polymorphisms and substance dependence. Am J Med Genet B Neuropsychiatr Genet. 2006;141b:499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jing L, Qiu Y, Zhang Y, Li JX. Effects of the cannabinoid CB1 receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug Alcohol Depend. 2014;143:251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nguyen T, Gamage TF, Finlay DB, Decker AM, Langston TL, Barrus D, et al. Development of 3-(4-Chlorophenyl)-1-(phenethyl)urea analogues as allosteric modulators of the cannabinoid Type-1 receptor: RTICBM-189 is brain penetrant and attenuates reinstatement of cocaine-seeking behavior. J Med Chem. 2022;65:257–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luke Urbanik for assistance with surgeries.

Funding

This work was supported by National Institute on Drug Abuse Grants R01-DA015758 to JRM, R01-DA038663 to JRM and CJH, and K01-DA045295 to JRMc.

Author information

Authors and Affiliations

Authors

Contributions

JRMc, CJH, and JRM designed the project and experiments. JRMc and JRM supervised all of the experiments. JRMc, CPW, and DMS conducted the surgeries and JRMc ran the behavioral experiments with assistance from CPW, DMS, RS, and JCM. CPW and RS completed the histology. JRMc ran the behavior and collected tissue for the CB1R binding assay and CJH supervised and LAK completed the binding assays and analysis of the binding data. JRMc analyzed and graphed all data. JRMc and JRM wrote the first draft of the manuscript with editing and reviewing by CJH. Funding was acquired by JRMc, CJH, and JRM.

Corresponding author

Correspondence to Jayme R. McReynolds.

Ethics declarations

Competing interests

JRMc, CPW, DMS, JCM, LAK, and RS declare no potential competing interest. CJH is a member of the scientific board of directors of Phytecs, Inc; has equity in Formulate Biosciences, Inc and has received consultation fees from Pharmavite, LLC. JRM is a co-founder of and has equity in Promentis Pharmaceuticals, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McReynolds, J.R., Wolf, C.P., Starck, D.M. et al. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacol. 48, 1121–1132 (2023). https://doi.org/10.1038/s41386-023-01589-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01589-1

  • Springer Nature Switzerland AG

This article is cited by

Navigation