Skip to main content

Advertisement

Log in

Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Skin carcinogenesis is known to be a multi-step process with several stages along its malignant evolution. We hypothesized that transformation of normal epidermis to cutaneous squamous cell carcinoma (cSCC) is causally linked to alterations in microRNAs (miRNA) expression. For this end we decided to evaluate their alterations in the pathologic states ending in cSCC. Total RNA was extracted from formalin fixed paraffin embedded biopsies of five stages along the malignant evolution of keratinocytes towards cSCC: Normal epidermis, solar elastosis, actinic keratosis KIN1-2, advanced actinic keratosis KIN3 and well-differentiated cSCC. Next-generation small RNA sequencing was performed. We found that 18 miRNAs are overexpressed and 28 miRNAs are underexpressed in cSCC compared to normal epidermis. miR-424, miR-320, miR-222 and miR-15a showed the highest fold change among the overexpressed miRNAs. And miR-100, miR-101 and miR-497 showed the highest fold change among the underexpressed miRNAs. Heat map of hierarchical clustering analysis of significantly changed miRNAs and principle component analysis disclosed that the most prominent change in miRNAs expression occurred in the switch from ‘early’ stages; normal epidermis, solar elastosis and early actinic keratosis to the ‘late’ stages of epidermal carcinogenesis; late actinic keratosis and cSCC. We found several miRNAs with ‘stage specific’ alterations while others display a clear ‘gradual’, either progressive increase or decrease in expression along the malignant evolution of keratinocytes. The observed alterations focused in miRNAs involved in the regulation of AKT/mTOR or in those involved in epithelial to mesenchymal transition. We chose to concentrate on the evaluation of the molecular role of miR-497. We found that it induces reversion of epithelial to mesenchymal transition. We proved that SERPINE-1 is its biochemical target. The present study allows us to further study the pathways that are regulated by miRNAs along the malignant evolution of keratinocytes towards cSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ra SH, Li X, Binder S . Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol 2011; 24: 963–973.

    Article  CAS  Google Scholar 

  2. Eshkoor SA, Ismail P, Rahman SA, Mirinargesi M, Oshkour SA . Increased protein expression of p16 and cyclin D1 in squamous cell carcinoma tissues. Biosci Trends 2009; 3: 105–109.

    CAS  PubMed  Google Scholar 

  3. Boukamp P . UV-induced skin cancer: similarities—variations. J Dtsch Dermatol Ges 2005; 3: 493–503.

    Article  Google Scholar 

  4. Cleaver JE, Crowley E . UV damage, DNA repair and skin carcinogenesis. Front Biosci 2002; 7: d1024–d1043.

    CAS  PubMed  Google Scholar 

  5. Boukamp P . Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005; 26: 1657–1667.

    Article  CAS  Google Scholar 

  6. Cockerell CJ, Wharton JR . New histopathological classification of actinic keratosis (incipient intraepidermal squamous cell carcinoma). J Drugs Dermatol 2005; 4: 462–467.

    PubMed  Google Scholar 

  7. Barzilai A, Lyakhovitsky A, Trau H, Fogel M, Huszar M . Expression of p53 in the evolution of squamous cell carcinoma: correlation with the histology of the lesion. J Am Acad Dermatol 2007; 57: 669–676.

    Article  Google Scholar 

  8. Corbalan-Velez R, Ruiz-Macia JA, Brufau C, Oviedo-Ramirez I, Martinez-Barba E, Lopez-Lozano JM et al. [Solar elastosis in cutaneous squamous cell carcinoma]. Actas dermo-sifiliograficas 2010; 101: 517–523.

    Article  CAS  Google Scholar 

  9. Cockerell CJ . Histopathology of incipient intraepidermal squamous cell carcinoma (‘actinic keratosis’). J Am Acad Dermatol 2000; 42: 11–17.

    Article  CAS  Google Scholar 

  10. Alam M, Ratner D . Cutaneous squamous-cell carcinoma. N Engl J Med 2001; 344: 975–983.

    Article  CAS  Google Scholar 

  11. Burnworth B, Arendt S, Muffler S, Steinkraus V, Brocker EB, Birek C et al. The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1. Eur j cell biol 2007; 86: 763–780.

    Article  CAS  Google Scholar 

  12. Barrette K, Van Kelst S, Wouters J, Marasigan V, Fieuws S, Agostinis P et al. Epithelial-mesenchymal transition during invasion of cutaneous squamous cell carcinoma is paralleled by AKT activation. Br J Dermatol 2014; 171: 1014–1021.

    Article  CAS  Google Scholar 

  13. Geiger TR, Peeper DS . Metastasis mechanisms. Biochim Biophys Acta 2009; 1796: 293–308.

    CAS  Google Scholar 

  14. Mathias RA, Gopal SK, Simpson RJ . Contribution of cells undergoing epithelial-mesenchymal transition to the tumour microenvironment. J proteomics 2013; 78: 545–557.

    Article  CAS  Google Scholar 

  15. Toll A, Masferrer E, Hernandez-Ruiz ME, Ferrandiz-Pulido C, Yebenes M, Jaka A et al. Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases. J Dermatol Sci 2013; 72: 93–102.

    Article  CAS  Google Scholar 

  16. Ksiazkiewicz M, Markiewicz A, Zaczek AJ . Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 2012; 79: 195–208.

    Article  Google Scholar 

  17. Pang L, Li Q, Wei C, Zou H, Li S, Cao W et al. TGF-beta1/Smad signaling pathway regulates epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: in vitro and clinical analyses of cell lines and nomadic Kazakh patients from northwest Xinjiang, China. PLoS One 2014; 9: e112300.

    Article  Google Scholar 

  18. Guarino M . Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 2007; 39: 2153–2160.

    Article  CAS  Google Scholar 

  19. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    Article  CAS  Google Scholar 

  20. Katsuno Y, Lamouille S, Derynck R . TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr opin oncol 2013; 25: 76–84.

    Article  CAS  Google Scholar 

  21. Moustakas A, Heldin CH . Induction of epithelial-mesenchymal transition by transforming growth factor beta. Semin cancer biol 2012; 22: 446–454.

    Article  CAS  Google Scholar 

  22. Moustakas A, Heldin CH . Mechanisms of TGFbeta-induced epithelial-mesenchymal transition. J clin med 2016; 5.

  23. Papageorgis P . TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J oncol 2015; 2015: 587193.

    Article  Google Scholar 

  24. Hu Y, Tang H . MicroRNAs regulate the epithelial to mesenchymal transition (EMT) in cancer progression. Microrna 2014; 3: 108–117.

    Article  CAS  Google Scholar 

  25. Zaravinos A . The regulatory role of microRNAs in EMT and cancer. J oncol 2015; 2015: 865816.

    Article  Google Scholar 

  26. Zhang J, Ma L . MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 2012; 31: 653–662.

    Article  CAS  Google Scholar 

  27. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  28. Garzon R, Calin GA, Croce CM . MicroRNAs in cancer. Annu rev med 2009; 60: 167–179.

    Article  CAS  Google Scholar 

  29. Ma L, Weinberg RA . MicroRNAs in malignant progression. Cell Cycle 2008; 7: 570–572.

    Article  CAS  Google Scholar 

  30. Schickel R, Boyerinas B, Park SM, Peter ME . MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27: 5959–5974.

    Article  CAS  Google Scholar 

  31. Sand M, Skrygan M, Georgas D, Sand D, Hahn SA, Gambichler T et al. Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 2012; 68: 119–126.

    Article  CAS  Google Scholar 

  32. Toll A, Salgado R, Espinet B, Diaz-Lagares A, Hernandez-Ruiz E, Andrades E et al. MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol Cancer 2016; 15: 53.

    Article  Google Scholar 

  33. Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B et al. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J biol chem 2012; 287: 29899–29908.

    Article  CAS  Google Scholar 

  34. Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11: 943–950.

    Article  CAS  Google Scholar 

  35. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2013; 32: 1910–1920.

    Article  CAS  Google Scholar 

  36. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y et al. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res 2011; 17: 1722–1730.

    Article  CAS  Google Scholar 

  37. He XX, Kuang SZ, Liao JZ, Xu CR, Chang Y, Wu YL et al. The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst 2015; 11: 532–539.

    Article  CAS  Google Scholar 

  38. Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M et al. Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2013; 2: e56.

    Article  CAS  Google Scholar 

  39. Gillespie J, Skeeles LE, Allain DC, Kent MN, Peters SB, Nagarajan P et al. MicroRNA expression profiling in metastatic cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol 2015; 30: 1043–1045.

    Article  Google Scholar 

  40. Wang N, Xu ZW, Wang KH . Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes. Asian Pac J Cancer Prev 2014; 15: 10355–10361.

    Article  Google Scholar 

  41. Dziunycz P, Iotzova-Weiss G, Eloranta JJ, Lauchli S, Hafner J, French LE et al. Squamous cell carcinoma of the skin shows a distinct microRNA profile modulated by UV radiation. J Invest Dermatol 2010; 130: 2686–2689.

    Article  CAS  Google Scholar 

  42. Wang A, Landen NX, Meisgen F, Lohcharoenkal W, Stahle M, Sonkoly E et al. MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PLoS One 2014; 9: e103206.

    Article  Google Scholar 

  43. Yu X, Li Z . The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2016; 20: 3–9.

    Article  CAS  Google Scholar 

  44. van Haaften G, Agami R . Tumorigenicity of the miR-17-92 cluster distilled. Genes Dev 2010; 24: 1–4.

    Article  CAS  Google Scholar 

  45. Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P et al. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 2009; 23: 2806–2811.

    Article  CAS  Google Scholar 

  46. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev 2009; 23: 2839–2849.

    Article  CAS  Google Scholar 

  47. Lerman G, Avivi C, Mardoukh C, Barzilai A, Tessone A, Gradus B et al. MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS One 2011; 6: e20916.

    Article  CAS  Google Scholar 

  48. Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One 2013; 8: e64434.

    Article  CAS  Google Scholar 

  49. Chen Z, Jin Y, Yu D, Wang A, Mahjabeen I, Wang C et al. Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. Oral Oncol 2012; 48: 686–691.

    Article  Google Scholar 

  50. Huang HG, Luo X, Wu S, Jian B . MiR-99a inhibits cell proliferation and tumorigenesis through targeting mTOR in human anaplastic thyroid cancer. Asian Pac J Cancer Prev 2015; 16: 4937–4944.

    Article  Google Scholar 

  51. Hu Y, Zhu Q, Tang L . MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS One 2014; 9: e92099.

    Article  Google Scholar 

  52. Sun D, Layer R, Mueller AC, Cichewicz MA, Negishi M, Paschal BM et al. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 2014; 33: 1448–1457.

    Article  CAS  Google Scholar 

  53. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME . The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010; 17: F19–F36.

    Article  CAS  Google Scholar 

  54. Boominathan L . The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 2010; 29: 613–639.

    Article  CAS  Google Scholar 

  55. Sun YM, Lin KY, Chen YQ . Diverse functions of miR-125 family in different cell contexts. J. Hematol Oncol 2013; 6: 6.

    Article  CAS  Google Scholar 

  56. Yan H, Dong X, Zhong X, Ye J, Zhou Y, Yang X et al. Inhibitions of epithelial to mesenchymal transition and cancer stem cells-like properties are involved in miR-148a-mediated anti-metastasis of hepatocellular carcinoma. Mol Carcinog 2014; 53: 960–969.

    CAS  PubMed  Google Scholar 

  57. Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J et al. miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 2012; 417: 1100–1105.

    Article  CAS  Google Scholar 

  58. Zhang N, Shen Q, Zhang P . miR-497 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer cells by targeting fos-related antigen-1. Onco Targets Ther 2016; 9: 6597–6604.

    Article  CAS  Google Scholar 

  59. Wu Z, Li X, Cai X, Huang C, Zheng M . miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug. Tumour Biol 2016; 37: 7939–7950.

    Article  CAS  Google Scholar 

  60. Freytag J, Wilkins-Port CE, Higgins CE, Higgins SP, Samarakoon R, Higgins PJ . PAI-1 mediates the TGF-beta1+EGF-induced ‘scatter’ response in transformed human keratinocytes. J Invest Dermatol 2010; 130: 2179–2190.

    Article  CAS  Google Scholar 

  61. Omori K, Hattori N, Senoo T, Takayama Y, Masuda T, Nakashima T et al. Inhibition of plasminogen activator inhibitor-1 attenuates transforming growth factor-beta-dependent epithelial mesenchymal transition and differentiation of fibroblasts to myofibroblasts. PLoS One 2016; 11: e0148969.

    Article  Google Scholar 

  62. Guo R, Lv Y, Ouyang Y, Liu S, Li D . The role of miR-497/EIF3A axis in TGFbeta1-induced epithelial-mesenchymal transition and extracellular matrix in rat alveolar epithelial cells and pulmonary fibroblasts. J Cell Biochem 2017; 118: 3401–3408.

    Article  CAS  Google Scholar 

  63. Feng F, Kuai D, Wang H, Li T, Miao W, Liu Y et al. Reduced expression of microRNA-497 is associated with greater angiogenesis and poor prognosis in human gliomas. Hum Pathol 2016; 58: 47–53.

    Article  CAS  Google Scholar 

  64. Zhao X, Zhao Z, Xu W, Hou J, Du X . Down-regulation of miR-497 is associated with poor prognosis in renal cancer. Int j clin exp pathol 2015; 8: 758–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang S, Li H, Wang J, Wang D . Expression of microRNA-497 and its prognostic significance in human breast cancer. Diagn Pathol 2013; 8: 172.

    Article  Google Scholar 

  66. Luo M, Shen D, Zhou X, Chen X, Wang W . MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery 2013; 153: 836–847.

    Article  Google Scholar 

  67. Zhang L, Yu Z, Xian Y, Lin X . microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma. FEBS Open Bio 2016; 6: 155–164.

    Article  CAS  Google Scholar 

  68. Rheinwald JG, Beckett MA . Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas. Cancer Res 1981; 41: 1657–1663.

    CAS  PubMed  Google Scholar 

  69. Green J, Ikram M, Vyas J, Patel N, Proby CM, Ghali L et al. Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours. Br J Cancer 2006; 94: 1446–1451.

    Article  CAS  Google Scholar 

  70. Tilgen W, Boukamp P, Breitkreutz D, Dzarlieva RT, Engstner M, Haag D et al. Preservation of morphological, functional, and karyotypic traits during long-term culture and in vivo passage of two human skin squamous cell carcinomas. Cancer Res 1983; 43: 5995–6011.

    CAS  PubMed  Google Scholar 

  71. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  Google Scholar 

  72. Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y et al. Silencing of a large micro-RNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 2012; 11: 44.

    Article  CAS  Google Scholar 

  73. Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D . MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer 2015; 14: 68.

    Article  Google Scholar 

  74. Hafner M, Renwick N, Farazi TA, Mihailovic A, Pena JT, Tuschl T . Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 2012; 58: 164–170.

    Article  CAS  Google Scholar 

  75. Farazi TA, Brown M, Morozov P, Ten Hoeve JJ, Ben-Dov IZ, Hovestadt V et al. Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing. Methods 2012; 58: 171–187.

    Article  CAS  Google Scholar 

  76. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  Google Scholar 

  77. Wickham H . ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag: New York, 2009.

    Book  Google Scholar 

  78. Gaujoux R, Seoighe C . A flexible R package for nonnegative matrix factorization. BMC Bioinform 2010; 11: 367.

    Article  Google Scholar 

  79. Huntley MA, Larson JL, Chaivorapol C, Becker G, Lawrence M, Hackney JA et al. ReportingTools: an automated result processing and presentation toolkit for high-throughput genomic analyses. Bioinformatics 2013; 29: 3220–3221.

    Article  CAS  Google Scholar 

  80. Solly K, Wang X, Xu X, Strulovici B, Zheng W . Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay drug dev technol 2004; 2: 363–372.

    Article  CAS  Google Scholar 

  81. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by: Israel Cancer Association (ICA)-grant number 20110076 to Avni D, and Ministry of Health, State of Israel (Ministry of Health)-grant number 3-10132 to Avni D, and Israel Cancer Association (ICA)-grant number 20160038 to Avni D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Sidi or D Avni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizrahi, A., Barzilai, A., Gur-Wahnon, D. et al. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 37, 218–230 (2018). https://doi.org/10.1038/onc.2017.315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.315

  • Springer Nature Limited

This article is cited by

Navigation