Skip to main content

Advertisement

Log in

Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell–cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a ‘leader–follower’ mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  Google Scholar 

  2. Howlader N, Noone A, Krapcho M, Neyman N, Aminou R, Waldron W et al. SEER Cancer Statistics Review, 1975–2008. National Cancer Institute: Bethesda, MD, USA, 2011. p 19.

    Google Scholar 

  3. Marcus CS, Maxwell GL, Darcy KM, Hamilton CA, McGuire WP . Current approaches and challenges in managing and monitoring treatment response in ovarian cancer. J Cancer 2014; 5: 25.

    Article  Google Scholar 

  4. Auersperg N, Wong AST, Choi K, Kang SK, Leung PCK . Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001; 22: 255–288.

    CAS  PubMed  Google Scholar 

  5. Hudson LG, Zeineldin R, Stack MS . Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 2008; 25: 643–655.

    Article  CAS  Google Scholar 

  6. Levanon K, Crum C, Drapkin R . New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 2008; 26: 5284–5293.

    Article  Google Scholar 

  7. Lengyel E . Ovarian cancer development and metastasis. Am J Pathol 2010; 177: 1053–1064.

    Article  Google Scholar 

  8. Pradeep S, Kim SW, Wu SY, Nishimura M, Chaluvally-Raghavan P, Miyake T et al. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell 2014; 26: 77–91.

    Article  CAS  Google Scholar 

  9. Coffman LG, Burgos-Ojeda D, Wu R, Cho K, Bai S, Buckanovich RJ . New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination. Transl Res 2016; 175: 92–102.e2.

    Article  Google Scholar 

  10. Niedbala MJ, Crickard K, Bernacki RJ . Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix: an in vitro model system for studying tumor cell adhesion and invasion. Exp Cell Res 1985; 160: 499–513.

    Article  CAS  Google Scholar 

  11. Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M et al. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov 2011; 1: 144–157.

    Article  CAS  Google Scholar 

  12. Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema Jr TR, Skubitz APN . Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol 2004; 93: 170–181.

    Article  CAS  Google Scholar 

  13. Burleson KM, Boente MP, Pambuccian SE, Skubitz AP . Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med 2006; 4: 6.

    Article  Google Scholar 

  14. Lautscham LA, Kämmerer C, Lange JR, Kolb T, Mark C, Schilling A et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys J 2015; 109: 900–913.

    Article  CAS  Google Scholar 

  15. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 2007; 9: 893–904.

    Article  CAS  Google Scholar 

  16. Friedl P, Wolf K . Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 2008; 68: 7247–7249.

    Article  CAS  Google Scholar 

  17. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ . Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003; 114: 33–45.

    Article  CAS  Google Scholar 

  18. Ellerbroek SM, Wu YI, Overall CM, Stack MS . Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem 2001; 276: 24833–24842.

    Article  CAS  Google Scholar 

  19. Barbolina MV, Adley BP, Ariztia EV, Liu Y, Stack MS . Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J Biol Chem 2007; 282: 4924–4931.

    Article  CAS  Google Scholar 

  20. Sodek K, Ringuette M, Brown T . MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. Br J Cancer 2007; 97: 358–367.

    Article  CAS  Google Scholar 

  21. King SM, Hilliard TS, Wu LY, Jaffe RC, Fazleabas AT, Burdette JE . The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr Relat Cancer 2011; 18: 627–642.

    Article  CAS  Google Scholar 

  22. Poncelet C, Cornelis F, Tepper M, Sauce E, Magan N, Wolf JP et al. Expression of E-and N-cadherin and CD44 in endometrium and hydrosalpinges from infertile women. Fertil Steril 2010; 94: 2909–2912.

    Article  CAS  Google Scholar 

  23. Ahmed N, Thompson EW, Quinn MA . Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007; 213: 581–588.

    Article  CAS  Google Scholar 

  24. Klymenko Y, Johnson J, Bos B, Lombard R, Campbell L, Loughran E et al. Heterogeneous cadherin expression and multi-cellular aggregate dynamics in ovarian cancer dissemination. Neoplasia 2017; DOI:10.1016/j.neo.2017.04.002.

    Article  CAS  Google Scholar 

  25. Friedl P, Locker J, Sahai E, Segall JE . Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14: 777–783.

    Article  Google Scholar 

  26. Friedl P, Gilmour D . Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10: 445–457.

    Article  CAS  Google Scholar 

  27. Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 2011; 124 (Pt 13): 2120–2131.

    Article  CAS  Google Scholar 

  28. Davidson B, Goldberg I, Berner A, Nesland JM, Givant-Horwitz V, Bryne M et al. Expression of membrane-type 1, 2, and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. Am J Clin Pathol 2001; 115: 517–524.

    Article  CAS  Google Scholar 

  29. Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM et al. The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol 2002; 187: 39–45.

    Article  CAS  Google Scholar 

  30. Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS . Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination. Cancer Res 2009; 69: 7121–7129.

    Article  CAS  Google Scholar 

  31. Desai RA, Gao L, Raghavan S, Liu WF, Chen CS . Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 2009; 122 (Pt 7): 905–911.

    Article  CAS  Google Scholar 

  32. Shih W, Yamada S . N-cadherin-mediated cell–cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci 2012; 125: 3661–3670.

    Article  CAS  Google Scholar 

  33. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  Google Scholar 

  34. Carey SP, Starchenko A, McGregor AL, Reinhart-King CA . Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin Exp Metastasis 2013; 30: 615–630.

    Article  CAS  Google Scholar 

  35. Davidowitz RA, Iwanicki MP, Brugge JS . In vitro mesothelial clearance assay that models the early steps of ovarian cancer metastasis. J Vis Exp 2012; 17: e3888.

    Google Scholar 

  36. Lengyel E, Burdette J, Kenny H, Matei D, Pilrose J, Haluska P et al. Epithelial ovarian cancer experimental models. Oncogene 2014; 33: 3619–3633.

    Article  CAS  Google Scholar 

  37. Friedl P, Hegerfeldt Y, Tusch M . Collective cell migration in morphogenesis and cancer. Int J Dev Biol 2004; 48: 441–450.

    Article  CAS  Google Scholar 

  38. Friedl P . Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004; 16: 14–23.

    Article  CAS  Google Scholar 

  39. Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.

    Article  CAS  Google Scholar 

  40. Hegerfeldt Y, Tusch M, Brocker EB, Friedl P . Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 2002; 62: 2125–2130.

    CAS  PubMed  Google Scholar 

  41. Ilina O, Friedl P . Mechanisms of collective cell migration at a glance. J Cell Sci 2009; 122 (Pt 18): 3203–3208.

    Article  CAS  Google Scholar 

  42. Wolf K, Friedl P . Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol 2006; 154 Suppl 1: 11–5.

    Article  CAS  Google Scholar 

  43. Bell C, Stadler J, Waizbard E, Chaitchik S, Greif F . Tumor differentiation and histological type in human breast cancer. J Surg Oncol 1986; 31: 39–43.

    Article  CAS  Google Scholar 

  44. Page DL, Anderson TJ Diagnostic Histopathology of the Breast. Churchill Livingstone, Edinburgh, 1987.

  45. Ackerman AB, Godomski J . Neurotropic malignant melanoma and other neurotropic neoplasms in the skin. Am J Dermatopathol 1984; 6: 63–80.

    Article  Google Scholar 

  46. Day CL Jr, Harrist TJ, Gorstein F, Sober AJ, Lew RA, Friedman RJ et al. Malignant melanoma. Prognostic significance of “microscopic satellites” in the reticular dermis and subcutaneous fat. Ann Surg 1981; 194: 108–112.

    Article  Google Scholar 

  47. Takai N, Jain A, Kawamata N, Popoviciu LM, Said JW, Whittaker S et al. 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer 2005; 104: 2701–2708.

    Article  CAS  Google Scholar 

  48. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC . Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 2004; 10: 1032–1042.

    Article  CAS  Google Scholar 

  49. Afzal S, Lalani E, Poulsom R, Stubbs A, Rowlinson G, Sato H et al. MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: possible implications for the role of desmoplastic fibroblasts. Hum Pathol 1998; 29: 155–165.

    Article  CAS  Google Scholar 

  50. Liu Y, Metzinger MN, Lewellen KA, Cripps SN, Carey KD, Harper EI et al. Obesity contributes to ovarian cancer metastatic success through increased lipogenesis, enhanced vascularity, and decreased infiltration of M1 macrophages. Cancer Res 2015; 75: 5046–5057.

    Article  CAS  Google Scholar 

  51. Mitra AK, Davis DA, Tomar S, Roy L, Gurler H, Xie J et al. In vivo tumor growth of high-grade serous ovarian cancer cell lines. Gynecol Oncol 2015; 138: 372–377.

    Article  CAS  Google Scholar 

  52. Fraley SI, Wu PH, He L, Feng Y, Krisnamurthy R, Longmore GD et al. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep 2015; 5: 14580.

    Article  CAS  Google Scholar 

  53. Davidowitz RA, Selfors LM, Iwanicki MP, Elias KM, Karst A, Piao H et al. Mesenchymal gene program-expressing ovarian cancer spheroids exhibit enhanced mesothelial clearance. J Clin Invest 2014; 124: 2611–2625.

    Article  CAS  Google Scholar 

  54. Moser TL, Pizzo SV, Bafetti LM, Fishman DA, Stack MS . Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the αA2β1 integrin. Int J Cancer 1996; 67: 695–701.

    Article  CAS  Google Scholar 

  55. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013; 154: 1047–1059.

    Article  CAS  Google Scholar 

  56. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474: 179–183.

    Article  CAS  Google Scholar 

  57. Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mater 2016; 15: 1297–1306.

    Article  CAS  Google Scholar 

  58. Pasapera AM, Plotnikov SV, Fischer RS, Case LB, Egelhoff TT, Waterman CM . Rac1-dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing. Curr Biol 2015; 25: 175–186.

    Article  CAS  Google Scholar 

  59. Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S, Arwert E et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 2017; 19: 224–237.

    Article  CAS  Google Scholar 

  60. Utton MA, Eickholt B, Howell FV, Wallis J, Doherty P . Soluble N‐cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N‐cadherin and the fibroblast growth factor receptor co‐cluster in cells. J Neurochem 2001; 76: 1421–1430.

    Article  CAS  Google Scholar 

  61. Takeda H, Shimoyama Y, Nagafuchi A, Hirohashi S . E-cadherin functions as a cis-dimer at the cell–cell adhesive interface in vivo. Nat Struct Biol 1999; 6: 310–312.

    Article  CAS  Google Scholar 

  62. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ . N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147: 631–644.

    Article  CAS  Google Scholar 

  63. Doherty P, Walsh FS . CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 1996; 8: 99–111.

    Article  CAS  Google Scholar 

  64. Mariotti A, Perotti A, Sessa C, Rüegg C . N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16: 451–465.

    Article  CAS  Google Scholar 

  65. Blaschuk OW, Devemy E . Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 2009; 625: 195–198.

    Article  CAS  Google Scholar 

  66. Blaschuk OW . N-cadherin antagonists as oncology therapeutics. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140039.

    Article  Google Scholar 

  67. Shintani Y, Fukumoto Y, Chaika N, Grandgenett PM, Hollingsworth MA, Wheelock MJ et al. ADH‐1 suppresses N‐cadherin‐dependent pancreatic cancer progression. Int J Cancer 2008; 122: 71–77.

    Article  CAS  Google Scholar 

  68. Sadler NM, Harris BR, Metzger BA, Kirshner J . N-cadherin impedes proliferation of the multiple myeloma cancer stem cells. Am J Blood Res 2013; 3: 271–285.

    PubMed  PubMed Central  Google Scholar 

  69. Augustine CK, Yoshimoto Y, Gupta M, Zipfel PA, Selim MA, Febbo P et al. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res 2008; 68: 3777–3784.

    Article  CAS  Google Scholar 

  70. Stewart DJ, Jonker DJ, Goel R, Goss G, Maroun JA, Cripps CM et al. Final clinical and pharmacokinetic (PK) results from a phase 1 study of the novel N-cadherin (N-cad) antagonist, Exherin (ADH-1), in patients with refractory solid tumors stratified according to N-cad expression. Pet J Clin Oncol 2006; 24 (suppl-18): 3016–30160.

    Google Scholar 

  71. Devemy E, Blaschuk OW . Identification of a novel N-cadherin antagonist. Peptides 2008; 29: 1853–1861.

    Article  CAS  Google Scholar 

  72. Hazan RB, Kang L, Whooley BP, Borgen PI . N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun 1997; 4: 399–411.

    Article  CAS  Google Scholar 

  73. Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 2010; 16: 1414–1420.

    Article  CAS  Google Scholar 

  74. Bruney L, Conley KC, Moss NM, Liu Y, Stack MS . Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium. Biol Chem 2014; 395: 1221–1231.

    Article  CAS  Google Scholar 

  75. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Research Grants RO1CA109545 and RO1CA086984 (both to MSS) from the National Institutes of Health/National Cancer Institute, the Leo and Anne Albert Charitable Trust (to MSS); the Research Like a Champion grant (to YK and RL); the Walther Cancer Foundation Seeding Research in Cancer grant (to OK); NSF DGE1313583 (to EL); U01-HL116330 (to OK and MA) and University of Notre Dame Integrated Imaging Facility. We thank Dr Charles Tessier, Indiana University School of Medicine–South Bend for assistance with second-harmonic-generation imaging microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Alber or M S Stack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klymenko, Y., Kim, O., Loughran, E. et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 36, 5840–5851 (2017). https://doi.org/10.1038/onc.2017.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.171

  • Springer Nature Limited

This article is cited by

Navigation