Skip to main content

Advertisement

Log in

KLF13 regulates the differentiation-dependent human papillomavirus life cycle in keratinocytes through STAT5 and IL-8

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

High-risk strains of human papillomavirus (HPV) are the causative agents of cervical and anogenital cancers and are associated with 5% of all human cancers. Although prophylactic vaccines targeting a subset of HPV types are available, they are ineffective in HPV-infected individuals. Elucidation of the mechanisms controlling HPV replication may allow development of novel anti-HPV therapeutics. Infectious HPV virions are produced during terminal differentiation of host cells. The process of viral maturation requires synergistic interactions between viral and cellular proteins that leads to amplification of the viral genome and expression of late viral genes. Here we show that the transcription factor Kruppel-like factor 13 (KLF13) has a critical role in the HPV life cycle. KLF13 is overexpressed in HPV-positive keratinocytes and cervical cancer cell lines. Expression of KLF13 in normal cervical epithelium is low but increases significantly in cervical intraepithelial neoplasia and invasive squamous cervical cancer. After HPV infection, the E7 protein suppresses ubiquitin ligase FBW7 expression leading to an increase in KLF13 expression. Reduction of KLF13 with short hairpin RNA in differentiating HPV-positive cells resulted in diminished levels of viral gene expression and genome amplification. Knockdown of KLF13 also reduced the level of the transcription factor signal transducer and activator of transcription 5, which led to the downregulation of the ataxia-telangiectasia mutated DNA damage pathway and the chemokine interleukin-8 (IL-8). In addition, neutralization of IL-8 diminished viral genome amplification in differentiating HPV-positive cells. Thus, KLF13 is critical for the activation of the HPV productive life cycle and is likely involved in initiation and progression of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arbyn M, Castellsague X, de Sanjose S, Bruni L, Saraiya M, Bray F et al. Worldwide burden of cervical cancer in 2008. Ann Oncol 2011; 22: 2675–2686.

    Article  CAS  PubMed  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM, Bray F . Chapter 2: the burden of HPV-related cancers. Vaccine 2006; 24: S3/11–25.

    Article  Google Scholar 

  4. Harper DM, Franco EL, Wheeler CM, Moscicki AB, Romanowski B, Roteli-Martins CM et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 2006; 367: 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  5. Moody CA, Laimins LA . Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10: 550–560.

    Article  CAS  PubMed  Google Scholar 

  6. Kajitani N, Satsuka A, Kawate A, Sakai H . Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front Microbiol 2012; 3: 152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong S, Laimins LA . Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Fut Microbiol 2013; 8: 1547–1557.

    Article  CAS  Google Scholar 

  8. Steenbergen RD, Snijders PJ, Heideman DA, Meijer CJ . Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer 2014; 14: 395–405.

    Article  CAS  PubMed  Google Scholar 

  9. Desaintes C, Demeret C . Control of papillomavirus DNA replication and transcription. Semin Cancer Biol 1996; 7: 339–347.

    Article  CAS  PubMed  Google Scholar 

  10. Ai W, Narahari J, Roman A . Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J Virol 2000; 74: 5198–5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thierry F . Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 2009; 384: 375–379.

    Article  CAS  PubMed  Google Scholar 

  12. Cao Z, Sun X, Icli B, Wara AK, Feinberg MW . Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 2010; 116: 4404–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McConnell BB, Yang VW . Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010; 90: 1337–1381.

    Article  CAS  PubMed  Google Scholar 

  14. Limame R, Op de Beeck K, Lardon F, De Wever O, Pauwels P . Kruppel-like factors in cancer progression: three fingers on the steering wheel. Oncotarget 2014; 5: 29–48.

    Article  PubMed  Google Scholar 

  15. Ahn YT, Huang B, McPherson L, Clayberger C, Krensky AM . Dynamic interplay of transcriptional machinery and chromatin regulates "late" expression of the chemokine RANTES in T lymphocytes. Mol Cell Biol 2007; 27: 253–266.

    Article  CAS  PubMed  Google Scholar 

  16. Aldinucci D, Colombatti A . The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014; 2014: 292376.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Henson BJ, Gollin SM . Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res 2010; 128: 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim DS, Zhang W, Millman SE, Hwang BJ, Kwon SJ, Clayberger C et al. Fbw7gamma-mediated degradation of KLF13 prevents RANTES expression in resting human but not murine T lymphocytes. Blood 2012; 120: 1658–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moody CA, Laimins LA . Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathogens 2009; 5: e1000605.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sakakibara N, Chen D, McBride AA . Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathogens 2013; 9: e1003321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyers C, Frattini MG, Hudson JB, Laimins LA . Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 1992; 257: 971–973.

    Article  CAS  PubMed  Google Scholar 

  22. Apt D, Watts RM, Suske G, Bernard HU . High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virol 1996; 224: 281–291.

    Article  CAS  Google Scholar 

  23. Marrero-Rodriguez D, Taniguchi-Ponciano K, Jimenez-Vega F, Romero-Morelos P, Mendoza-Rodriguez M, Mantilla A et al. Kruppel-like factor 5 as potential molecular marker in cervical cancer and the KLF family profile expression. Tumour Biol 2014; 35: 11399–11407.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010; 62: 3425–3435.

    Article  CAS  PubMed  Google Scholar 

  25. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY . MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 2010; 107: 21505–21510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welcker M, Clurman BE . FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8: 83–93.

    Article  CAS  PubMed  Google Scholar 

  27. Forte E, Raja AN, Shamulailatpam P, Manzano M, Schipma MJ, Casey JL et al. MicroRNA-mediated transformation by the Kaposi's sarcoma-associated herpesvirus Kaposin locus. J Virol 2015; 89: 2333–2341.

    Article  PubMed  Google Scholar 

  28. Hong S, Laimins LA . The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathogens 2013; 9: e1003295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grone A . Keratinocytes and cytokines. Vet Immunol Immunopathol 2002; 88: 1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Masuya D, Huang C, Liu D, Kameyama K, Hayashi E, Yamauchi A et al. The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients. Cancer 2001; 92: 2628–2638.

    Article  CAS  PubMed  Google Scholar 

  31. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 2003; 9: 729–737.

    CAS  PubMed  Google Scholar 

  32. Fujimoto J, Sakaguchi H, Aoki I, Tamaya T . Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res 2000; 60: 2632–2635.

    CAS  PubMed  Google Scholar 

  33. Wu S, Shang H, Cui L, Zhang Z, Zhang Y, Li Y et al. Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol Cell Biochem 2013; 375: 69–79.

    CAS  PubMed  Google Scholar 

  34. Walker J, Smiley LC, Ingram D, Roman A . Expression of human papillomavirus type 16 E7 is sufficient to significantly increase expression of angiogenic factors but is not sufficient to induce endothelial cell migration. Virology 2011; 410: 283–290.

    Article  CAS  PubMed  Google Scholar 

  35. Simard JC, Noel C, Tessier PA, Girard D . Human S100A9 potentiates IL-8 production in response to GM-CSF or fMLP via activation of a different set of transcription factors in neutrophils. FEBS Lett 2014; 588: 2141–2146.

    Article  CAS  PubMed  Google Scholar 

  36. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011; 117: 3421–3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Muller U et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 2012; 22: 796–811.

    Article  CAS  PubMed  Google Scholar 

  38. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ et al. Landscape of genomic alterations in cervical carcinomas. Nature 2014; 506: 371–375.

    Article  CAS  PubMed  Google Scholar 

  39. Dyson N, Howley PM, Munger K, Harlow E . The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  CAS  PubMed  Google Scholar 

  40. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM . Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8: 4099–4105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harry BL, Eckhardt SG, Jimeno A . JAK2 inhibition for the treatment of hematologic and solid malignancies. Exp Opin Invest Drugs 2012; 21: 637–655.

    Article  CAS  Google Scholar 

  42. Xie K . Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001; 12: 375–391.

    Article  CAS  PubMed  Google Scholar 

  43. Waugh DJ, Wilson C . The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741.

    Article  CAS  PubMed  Google Scholar 

  44. De Larco JE, Wuertz BR, Furcht LT . The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res 2004; 10: 4895–4900.

    Article  CAS  PubMed  Google Scholar 

  45. Anttila HS, Reitamo S, Ceska M, Hurme M . Signal transduction pathways leading to the production of IL-8 by human monocytes are differentially regulated by dexamethasone. Clin Exp Immunol 1992; 89: 509–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fehrmann F, Laimins LA . Human papillomavirus type 31 life cycle: methods for study using tissue culture models. Methods Mol Biol 2005; 292: 317–330.

    CAS  PubMed  Google Scholar 

  47. Zhang W, Zeng X, Briggs KJ, Beaty R, Simons B, Chiu Yen RW et al. A potential tumor suppressor role for Hic1 in breast cancer through transcriptional repression of ephrin-A1. Oncogene 2010; 29: 2467–2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liao W, Schones DE, Oh J, Cui Y, Cui K, Roh TY et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 2008; 9: 1288–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the H Foundation Cancer Research Fund and Robert H Lurie Comprehensive Cancer Center (to W Zhang). We thank Dr Laimonis A Laimins for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Clayberger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Hong, S., Maniar, K. et al. KLF13 regulates the differentiation-dependent human papillomavirus life cycle in keratinocytes through STAT5 and IL-8. Oncogene 35, 5565–5575 (2016). https://doi.org/10.1038/onc.2016.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.97

  • Springer Nature Limited

This article is cited by

Navigation