Skip to main content
Log in

A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage

  • Original Article
  • Published:
Oncogene Submit manuscript

A Corrigendum to this article was published on 03 July 2017

Abstract

Fanconi anemia (FA) is a genetic disease of bone marrow failure, cancer susceptibility, and sensitivity to DNA crosslinking agents. FANCD2, the central protein of the FA pathway, is monoubiquitinated upon DNA damage, such as crosslinkers and replication blockers such as hydroxyurea (HU). Even though FA cells demonstrate unequivocal sensitivity to crosslinkers, such as mitomycin C (MMC), we find that they are largely resistant to HU, except for cells absent for expression of FANCD2. FANCD2, RAD51 and RAD18 form a complex, which is enhanced upon HU exposure. Surprisingly, although FANCD2 is required for this enhanced interaction, its monoubiquitination is not. Similarly, non-ubiquitinated FANCD2 can still support proliferation cell nuclear antigen (PCNA) monoubiquitination. RAD51, but not BRCA2, is also required for PCNA monoubiquitination in response to HU, suggesting that this function is independent of homologous recombination (HR). We further show that translesion (TLS) polymerase PolH chromatin localization is decreased in FANCD2 deficient cells, FANCD2 siRNA knockdown cells and RAD51 siRNA knockdown cells, and PolH knockdown results in HU sensitivity only. Our data suggest that FANCD2 and RAD51 have an important role in PCNA monoubiquitination and TLS in a FANCD2 monoubiquitination and HR-independent manner in response to HU. This effect is not observed with MMC treatment, suggesting a non-canonical function for the FA pathway in response to different types of DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim H, D'Andrea AD . Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 2012; 26: 1393–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Green AM, Kupfer GM . Fanconi anemia. Hematol Oncol Clin North Am 2009; 23: 193–214.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang W . Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8: 735–748.

    Article  CAS  Google Scholar 

  4. Bagby GC, Alter BP . Fanconi anemia. Semin Hematol 2006; 43: 147–156.

    Article  CAS  Google Scholar 

  5. Garaycoechea JI, Patel KJ . Why does the bone marrow fail in Fanconi anemia? Blood 2013; 123: 26–34.

    Article  PubMed  Google Scholar 

  6. Pickering A, Zhang J, Panneerselvam J, Fei P . Advances in the understanding of Fanconi anemia tumor suppressor pathway. Cancer Biol Ther 2013; 14: 1089–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alpi AF, Patel KJ . Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair 2009; 8: 430–435.

    Article  CAS  PubMed  Google Scholar 

  8. Holloman WK . Unraveling the mechanism of BRCA2 in homologous recombination. Nat Struct Mol Biol 2011; 18: 748–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297: 606–609.

    Article  CAS  Google Scholar 

  10. Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 2007; 6: 891–899.

    Article  CAS  PubMed  Google Scholar 

  11. Chang DJ, Cimprich KA . DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol 2009; 5: 82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 2004; 23: 3886–3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams SA, Longerich S, Sung P, Vaziri C, Kupfer GM . The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 2011; 117: 5078–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Howlett NG, Harney JA, Rego MA, Kolling FWt, Glover TW . Functional interaction between the Fanconi Anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J Biol Chem 2009; 284: 28935–28942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 2004; 13: 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  16. Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005; 17: 331–339.

    Article  CAS  PubMed  Google Scholar 

  17. Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 2006; 8: 339–347.

    CAS  PubMed  Google Scholar 

  18. Palle K, Vaziri C . Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition. Cell Cycle 2011; 10: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirchandani KD, McCaffrey RM, D'Andrea AD . The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair 2008; 7: 902–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 2009; 326: 1698–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu D, Dudimah FD, Zhang J, Pickering A, Paneerselvam J, Palrasu M et al. Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle 2013; 12: 803–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW . The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 2005; 14: 693–701.

    Article  CAS  PubMed  Google Scholar 

  23. McCabe KM, Hemphill A, Akkari Y, Jakobs PM, Pauw D, Olson SB et al. ERCC1 is required for FANCD2 focus formation. Mol Genet Metab 2008; 95: 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dunn J, Potter M, Rees A, Runger TM . Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light. Cancer Res 2006; 66: 11140–11147.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP et al. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007; 71: 648–661.

    Article  PubMed  Google Scholar 

  26. Koc A, Wheeler LJ, Mathews CK, Merrill GF . Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 2004; 279: 223–230.

    Article  CAS  PubMed  Google Scholar 

  27. Schlacher K, Wu H, Jasin M . A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 2012; 22: 106–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaudhury I, Sareen A, Raghunandan M, Sobeck A . FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 2013; 41: 6444–6459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Decaillet C et al. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol Cell 2013; 51: 678–690.

    Article  CAS  PubMed  Google Scholar 

  30. Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G et al. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J 2011; 30: 692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnstone P, Reifsteck C, Kohler S, Worland P, Olson S, Moses RE et al. Fanconi anemia group A and D cell lines respond normally to inhibitors of cell cycle regulation. Somat Cell Mol Genet 1997; 23: 371–377.

    Article  CAS  PubMed  Google Scholar 

  32. Maurer-Schultze B, Siebert M, Bassukas ID . An in vivo study on the synchronizing effect of hydroxyurea. Exp Cell Res 1988; 174: 230–243.

    Article  CAS  PubMed  Google Scholar 

  33. Miyase S, Tateishi S, Watanabe K, Tomita K, Suzuki K, Inoue H et al. Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination. J Biol Chem 2005; 280: 515–524.

    Article  CAS  PubMed  Google Scholar 

  34. Zeman MK, Lin JR, Freire R, Cimprich KA . DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. J Cell Biol 2014; 206: 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown S, Niimi A, Lehmann AR . Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork. Cell Cycle 2009; 8: 689–692.

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Bozza W, Zhuang Z . Ubiquitination of PCNA and its essential role in eukaryotic translesion synthesis. Cell Biochem Biophys 2011; 60: 47–60.

    Article  PubMed  Google Scholar 

  37. Terai K, Abbas T, Jazaeri AA, Dutta A . CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol Cell 2010; 37: 143–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bindra RS, Goglia AG, Jasin M, Powell SN . Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Res 2013; 41: e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S . RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419: 135–141.

    Article  CAS  PubMed  Google Scholar 

  40. Stelter P, Ulrich HD . Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003; 425: 188–191.

    Article  CAS  Google Scholar 

  41. Kannouche PL, Lehmann AR . Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 2004; 3: 1011–1013.

    Article  CAS  PubMed  Google Scholar 

  42. Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S, Boulton SJ et al. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell 2012; 45: 75–86.

    Article  CAS  PubMed  Google Scholar 

  43. Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA . SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 2011; 42: 237–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 2011; 20: 4395–4410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirano S, Yamamoto K, Ishiai M, Yamazoe M, Seki M, Matsushita N et al. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J 2005; 24: 418–427.

    Article  CAS  PubMed  Google Scholar 

  46. Reliene R, Yamamoto ML, Rao PN, Schiestl RH . Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 2010; 70: 9703–9710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho TV, Scharer OD, Translesion DNA . synthesis polymerases in DNA interstrand crosslink repair. Environ Mol Mutagen 2010; 51: 552–566.

    CAS  PubMed  Google Scholar 

  48. Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 2005; 102: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  49. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T . Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 2010; 37: 492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiao F, Moss A, Kupfer GM . Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. J Biol Chem 2001; 276: 23391–23396.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G M Kupfer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Bosques, L., Sung, P. et al. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene 35, 22–34 (2016). https://doi.org/10.1038/onc.2015.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.68

  • Springer Nature Limited

This article is cited by

Navigation