Skip to main content
Log in

Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott DW, Freeman ML, Holt JT (1998) Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90:978–985

    Article  CAS  PubMed  Google Scholar 

  • Ali AM, Pradhan A, Singh TR, Du C, Li J, Wahengbam K, Grassman E, Auerbach AD, Pang Q, Meetei AR (2012) FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 119:3285–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameziane N, May P, Haitjema A, van de Vrugt HJ, van Rossum-Fikkert SE, Ristic D, Williams GJ, Balk J, Rockx D, Li H, Rooimans MA, Oostra AB, Velleuer E, Dietrich R, Bleijerveld OB, Maarten Altelaar AF, Meijers-Heijboer H, Joenje H, Glusman G, Roach J, Hood L, Galas D, Wyman C, Balling R, den Dunnen J, de Winter JP, Kanaar R, Gelinas R, Dorsman JC (2015) A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun 6:8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen PR, Ren K (2009) Fanconi anemia proteins, DNA interstrand crosslink repair pathways, and cancer therapy. Curr Cancer Drug Targets 9:101–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berwick M, Satagopan JM, Ben-Porat L, Carlson A, Mah K, Henry R, Diotti R, Milton K, Pujara K, Landers T, Dev Batish S, Morales J, Schindler D, Hanenberg H, Hromas R, Levran O, Auerbach AD (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67:9591–9596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson JY (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17:1247–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castella M, Jacquemont C, Thompson EL, Yeo JE, Cheung RS, Huang JW, Sobeck A, Hendrickson EA, Taniguchi T (2015) FANCI regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLoS Genet 11:e1005563

    Article  PubMed  PubMed Central  Google Scholar 

  • Clauson C, Scharer OD, Niedernhofer L (2013) Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 5:a012732

    Article  PubMed  PubMed Central  Google Scholar 

  • Dray E, Etchin J, Wiese C, Saro D, Williams GJ, Hammel M, Yu X, Galkin VE, Liu D, Tsai MS, Sy SM, Schild D, Egelman E, Chen J, Sung P (2010) Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol Biol 17:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erkko H, Xia B, Nikkila J, Schleutker J, Syrjakoski K, Mannermaa A, Kallioniemi A, Pylkas K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7:249–262

    Article  CAS  PubMed  Google Scholar 

  • Godthelp BC, Wiegant WW, Waisfisz Q, Medhurst AL, Arwert F, Joenje H, Zdzienicka MZ (2006) Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2. Mutat Res 594:39–48

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956

    Article  CAS  PubMed  Google Scholar 

  • Hira A, Yoshida K, Sato K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Shimamoto A, Tahara H, Ito E, Kojima S, Kurumizaka H, Ogawa S, Takata M, Yabe H, Yabe M (2015) Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet 96:1001–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch B, Shimamura A, Moreau L, Baldinger S, Hag-alshiekh M, Bostrom B, Sencer S, D'Andrea AD (2004) Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 103:2554–2559

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM (2011) RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131:901–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, Elledge SJ, Walter JC (2009) The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318:1637–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaraswamy E, Shiekhattar R (2007) Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol 27:6733–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung JW, Wang Y, Fong KW, Huen MS, Li L, Chen J (2012) Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci U S A 109:4491–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longerich S, Li J, Xiong Y, Sung P, Kupfer GM (2014) Stress and DNA repair biology of the Fanconi anemia pathway. Blood 124:2812–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Decaillet C, Gari K, Constantinou A (2013) FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 51:678–690

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Chini CC, Minter-Dykhouse K, Chen J (2003) Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem 278:13599–13602

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  CAS  PubMed  Google Scholar 

  • Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Muller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  CAS  PubMed  Google Scholar 

  • Montes de Oca R, Andreassen PR, Margossian SP, Gregory RC, Taniguchi T, Wang X, Houghtaling S, Grompe M, D'Andrea AD (2005) Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood 105:1003–1009

    Article  PubMed  Google Scholar 

  • Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefry F, Hammet F, Neuhausen SL, John EM, Andrulis IL, Terry MB, et al. (2012) Rare Mutations in XRCC2 Increase the Risk of Breast Cancer. Am J Hum Genet 90:734–739

  • Park JY, Singh TR, Nassar N, Zhang F, Freund M, Hanenberg H, Meetei AR, Andreassen PR (2014a) Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene 33:4803–4812

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Zhang F, Andreassen PR (2014b) PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim Biophys Acta 1846:263–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, Vance GH, Alkuraya FS, Hanenberg H, Andreassen PR (2016) Complementation of hypersensetivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet May 20 [Epub ahead of print] doi:10.1136/jmedgenet-2016-103847

  • Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  CAS  PubMed  Google Scholar 

  • Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Scharer OD, Walter JC (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164

    Article  CAS  PubMed  Google Scholar 

  • Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, Kennedy JA, Sougnez C, Gabriel SB, Elemento O, Chandrasekharappa SC, Schindler D, Auerbach AD, Smogorzewska A (2015) Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep 12:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer SL, Tian L, Kahkonen M, Schwartzentruber J, Kircher M, Majewski J, Dyment DA, Innes AM, Boycott KM, Moreau LA, Moilanen JS, Greenberg RA, University of Washington Centre for Mendelian G (2015) Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov 5:135–142

    Article  CAS  PubMed  Google Scholar 

  • Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility C, Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Sims AE, Spiteri E, Sims RJ 3rd, Arita AG, Lach FP, Landers T, Wurm M, Freund M, Neveling K, Hanenberg H, Auerbach AD, Huang TT (2007) FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14:564–567

    Article  CAS  PubMed  Google Scholar 

  • Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER 3rd, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ (2007) Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966

    Article  CAS  PubMed  Google Scholar 

  • Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A 106:7155–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD (2002) S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Virts EL, Jankowska A, Mackay C, Glaas MF, Wiek C, Kelich SL, Lottmann N, Kennedy FM, Marchal C, Lehnert E, Scharf RE, Dufour C, Lanciotti M, Farruggia P, Santoro A, Savasan S, Scheckenbach K, Schipper J, Wagenmann M, Lewis T, Leffak M, Farlow JL, Foroud TM, Honisch E, Niederacher D, Chakraborty SC, Vance GH, Pruss D, Timms KM, Lanchbury JS, Alpi AF, Hanenberg H (2015) AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum Mol Genet 24:5093–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JE, Tolar J, Levran O, Scholl T, Deffenbaugh A, Satagopan J, Ben-Porat L, Mah K, Batish SD, Kutler DI, MacMillan ML, Hanenberg H, Auerbach AD (2004) Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood 103:3226–3229

    Article  CAS  PubMed  Google Scholar 

  • Walden H, Deans AJ (2014) The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 43:257–278

    Article  CAS  PubMed  Google Scholar 

  • Wang AT, Kim T, Wagner JE, Conti BA, Lach FP, Huang AL, Molina H, Sanborn EM, Zierhut H, Cornes BK, Abhyankar A, Sougnez C, Gabriel SB, Auerbach AD, Kowalczykowski SC, Smogorzewska A (2015) A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell 59:478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Andreassen PR, D'Andrea AD (2004) Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 24:5850–5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:719–729

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Guo R, Paramasivam M, Shen W, Ling C, Fox D 3rd, Wang Y, Oostra AB, Kuehl J, Lee DY, Takata M, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Li L, Seidman MM, Wang W (2012) A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell 47:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Bick G, Park JY, Andreassen PR (2012) MDC1 and RNF8 function in a pathway that directs BRCA1-dependent localization of PALB2 required for homologous recombination. J Cell Sci 125:6049–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Fan Q, Ren K, Andreassen PR (2009a) PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B, Yu X (2009b) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Sridharan D, Lambert MW (2016) Nuclear α spectrin differentially affects monoubiquitinated versus non-ubiquitinated FANCD2 function after DNA interstrand cross-link damage. J Cell Biochem 117:671–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the DNA Sequencing Core and Comprehensive Mouse and Cancer Core of CCRF for their services and Dr. Alan D’Andrea (Dana-Farber Cancer Institute, Boston) for PD20 fibroblasts reconstituted with HA-tagged FANCD2. This work was funded by the following grants: NIH R01 HL084082 (A.R.M.) and NIH R01 HL085587 (P.R.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Andreassen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Fig. S1

The roles of RNF8 and MDC1 in recruiting PALB2 and FANCD2 to foci, in response to MMC, in a second cell type. a Immunoblot showing depletion of RNF8 and MDC1 in U2OS cells. b-c Quantification of MMC-induced FANCD2 foci (b) or PALB2 foci (c) in U2OS cells transfected with a control siRNA (siLacZ) or with siRNAs directed against RNF8 or MDC1 and treated with 0.5 μM MMC for 16 h. Values in each bar graph represent the mean of three independent counts of at least 150 cells each ±standard deviation. *indicates p < 0.005, **indicates p < 0.05. (GIF 25 kb)

High resolution image (TIFF 219 kb)

Fig. S2

FANCD2 and PALB2 foci display colocalization with γH2AX foci following treatment with MMC. a Quantification of the percentage of corrected FANCD2-deficient PD20 fibroblasts with FANCD2 nuclear foci which display five or more colocalized γH2AX foci at 4 or 16 h of treatment with 0.5 μM MMC. b The percentage of FANCD2-deficient cells, PD20 fibroblasts, corrected with HA-FANCD2, that display three or more FANCD2 (HA), PALB2, or γH2AX foci at different time points of treatment with 0.5 μM MMC. Results for γH2AX foci are added here to those already shown in Fig. 1b for FANCD2 and PALB2. Values in a-b represent the mean + standard deviation of three counts of 150 cells each. c-d Representative images of FANCD2 (c) and PALB2 (d) foci in which colocalization with γH2AX foci is detected. Images of DAPI-stained cells are shown to indicate the position of nuclei. Single channel images are shown in black-white, while merged images with FANCD2 or PALB2 foci in red and γH2AX foci in green are also included to display colocalization. Colocalization is indicated by a yellow signal in the merged images. (GIF 105 kb)

High resolution image (TIFF 1.23 mb)

Fig. S3

Knockdown of RNF8 and MDC1 does not alter cell cycle status. a Representative dot plots of the levels of BrdU versus DNA content measured with propidium iodide that were obtained using flow cytometry. Overlayed separation bins are shown for quantification of different cell cycle phases. The upper bin in each dot plot represents S phase. Bins at the lower left and lower right represent G1 and G2-M, respectively. b A bar graph representing quantification of G1, S, and G2-M in HeLa cells treated with each of the indicated siRNAs. (GIF 47 kb)

High resolution image (TIFF 369 kb)

Fig. S4

RNF8 and MDC1 have distinct roles in the recruitment of FANCD2 and PALB2 in response to ionizing radiation, similar to the response to ICLs. a Quantification of IR-induced FANCD2 or PALB2 foci in HeLa cells transfected with siRNAs targeting LacZ or RNF8 at 16 h following exposure to 10 Gy IR. b Quantification of IR-induced FANCD2 or PALB2 foci in cells treated with siRNAs targeting LacZ or MDC1. Values represent the mean of three independent counts of at least 150 cells each ±standard deviation *indicates p < 0.005. (GIF 18 kb)

High resolution image (TIFF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bick, G., Zhang, F., Meetei, A.R. et al. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network. Chromosoma 126, 417–430 (2017). https://doi.org/10.1007/s00412-016-0602-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-016-0602-9

Keywords

Navigation