Skip to main content

Advertisement

Log in

TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The biological outcome of TMPRSS2:ERG chromosomal translocations in prostate cancer (PC) remains poorly understood. To address this, we compared the transcriptional effects of TMPRSS2:ERG expression in a transgenic mouse model with those of ERG knockdown in a TMPRSS2:ERG-positive PC cell line. This reveals that ERG represses the expression of a previously unreported set of androgen receptor (AR)—independent neuronal genes that are indicative of neuroendocrine (NE) cell differentiation—in addition to previously reported AR-regulated luminal genes. Cell sorting and proliferation assays performed after sustained ERG knockdown indicate that ERG drives proliferation and blocks the differentiation of prostate cells to both NE and luminal cell types. Inhibition of ERG expression in TMPRSS2:ERG-positive PC cells through blockade of AR signaling is tracked with increased NE gene expression. We also provide evidence that these NE cells are resistant to pharmacological AR inhibition and can revert to the phenotype of parental cells upon restoration of AR/ERG signaling. Our findings highlight an ERG-regulated mechanism capable of repopulating the parent tumor through the transient generation of an anti-androgen therapy-resistant cell population, suggesting that ERG may have a direct role in preventing resistance to anti-androgen therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Clark JP, Cooper CS . ETS gene fusions in prostate cancer. Nat Rev Urol 2009; 6: 429–439.

    Article  CAS  PubMed  Google Scholar 

  2. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  3. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10: 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010; 70: 6735–6745.

    Article  CAS  PubMed  Google Scholar 

  5. Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 2013; 27: 683–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 2009; 41: 524–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mani RS, Iyer MK, Cao Q, Brenner JC, Wang L, Ghosh A et al. TMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers. Cancer Res 2011; 71: 5387–5392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Casey OM, Fang L, Hynes PG, Abou-Kheir WG, Martin PL, Tillman HS et al. TMP. PLoS ONE 2012; 7: e41668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med 2013; 19: 1023–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 2008; 105: 2105–2110.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA . Neurogenic origin of human prostate endocrine cells. Urology 1999; 53: 1041–1048.

    Article  CAS  PubMed  Google Scholar 

  12. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010; 17: 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon RA, di Sant'Agnese PA, Huang LS, Xu H, Yao JL, Yang Q et al. CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum Pathol 2009; 40: 252–258.

    Article  CAS  PubMed  Google Scholar 

  14. Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L et al. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 2009; 69: 787–798.

    Article  CAS  PubMed  Google Scholar 

  15. Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA 2005; 102: 11355–11360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 2006; 13: 151–167.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Cai Y, Yu W, Ren C, Spencer DM, Ittmann M . Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res 2008; 68: 8516–8524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009; 324: 787–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mertz KD, Setlur SR, Dhanasekaran SM, Demichelis F, Perner S, Tomlins S et al. Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 2007; 9: 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 2008; 100: 815–825.

    Article  CAS  PubMed  Google Scholar 

  21. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008; 27: 5348–5353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carmichael CL, Metcalf D, Henley KJ, Kruse EA, Di RL, Mifsud S et al. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia. Proc Natl Acad Sci USA 2012; 109: 15437–15442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bostwick DG, Dousa MK, Crawford BG, Wollan PC . Neuroendocrine differentiation in prostatic intraepithelial neoplasia and adenocarcinoma. Am J Surg Pathol 1994; 18: 1240–1246.

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Chen CJ, Wang JK, Hsia E, Li W, Squires J et al. Neuroendocrine differentiation of prostate cancer. Asian J Androl 2013; 15: 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jongsma J, Oomen MH, Noordzij MA, Romijn JC, van der Kwast TH, Schroder FH et al. Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate 2000; 42: 34–44.

    Article  CAS  PubMed  Google Scholar 

  27. Sehgal I, Powers S, Huntley B, Powis G, Pittelkow M, Maihle NJ . Neurotensin is an autocrine trophic factor stimulated by androgen withdrawal in human prostate cancer. Proc Natl Acad Sci USA 1994; 91: 4673–4677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papandreou CN, Usmani B, Geng Y, Bogenrieder T, Freeman R, Wilk S et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 1998; 4: 50–57.

    Article  CAS  PubMed  Google Scholar 

  29. Burchardt T, Burchardt M, Chen MW, Cao Y, de la Taille A, Shabsigh A et al. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol 1999; 162: 1800–1805.

    Article  CAS  PubMed  Google Scholar 

  30. Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB et al. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res 2004; 64: 5489–5495.

    Article  CAS  PubMed  Google Scholar 

  31. Matei DV, Renne G, Pimentel M, Sandri MT, Zorzino L, Botteri E et al. Neuroendocrine differentiation in castration-resistant prostate cancer: a systematic diagnostic attempt. Clin Genitourin Cancer 2012; 10: 164–173.

    Article  PubMed  Google Scholar 

  32. Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res 2014; 42: 999–1015.

    Article  CAS  PubMed  Google Scholar 

  33. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011; 1: 487–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lotan TL, Gupta NS, Wang W, Toubaji A, Haffner MC, Chaux A et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schelling LA, Williamson SR, Zhang S, Yao JL, Wang M, Huang J et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013; 44: 2227–2233.

    Article  CAS  PubMed  Google Scholar 

  36. Yuan TC, Veeramani S, Lin MF . Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 2007; 14: 531–547.

    Article  CAS  PubMed  Google Scholar 

  37. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996; 56: 3091–3102.

    CAS  PubMed  Google Scholar 

  38. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013; 2: e00499.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155: 1309–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 2013; 3: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  41. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  42. Yang JC, Ok JH, Busby JE, Borowsky AD, Kung HJ, Evans CP . Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res 2009; 69: 151–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee LF, Guan J, Qiu Y, Kung HJ . Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 2001; 21: 8385–8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun H, Qin B, Liu T, Wang Q, Liu J, Wang J et al. CistromeFinder for ChIP-seq and DNase-seq data reuse. Bioinformatics 2013; 29: 1352–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 2013 41: D64–D69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank William R Sellers, Nicholas Keen, Frank Stegmeier and Wenlin Shao for helpful discussions; Cory Abate-Shen for helpful input; Alan Ho for FACS analysis; David Ruddy, Daniel Rakiec, Michael Morrissey, Kim Bellavance, Elina Pradhan, Christoph Lengauer, Markus Warmuth, Hui Gao, Peter Finan, Elvis Shehu, Chris Wilson, Peter Fekkes, Paola Capodieci, Myrtha Constant, Samuel Ho, Brant Firestone and Janet Sim for their input and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Pagliarini.

Ethics declarations

Competing interests

ZM is the recipient of presidential postdoctoral fellowship from the Novartis Institutes for Biomedical Research. ZM, FL, VGL, JMK, YY, RV, ABJ, YY and RP are all employees of Novartis Institutes for Biomedical Research. MK and PZ are employees of H3 Biomedicine. MB is a consultant to Novartis and the recipient of sponsored research support from Novartis. JLR is an employee of Sanofi. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounir, Z., Lin, F., Lin, V. et al. TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene 34, 3815–3825 (2015). https://doi.org/10.1038/onc.2014.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.308

  • Springer Nature Limited

This article is cited by

Navigation