Skip to main content

Advertisement

Log in

Functional foods and dietary supplements for the management of dyslipidaemia

  • Review Article
  • Published:

From Nature Reviews Endocrinology

View current issue Sign up to alerts

Key Points

  • Use of functional foods and dietary supplements is becoming increasingly prevalent among those individuals at risk of cardiovascular disease; however, limited clinical guidance is available for the use of safe and effective supplements

  • Evidence supports the use of products such as soy protein, green tea, plant sterols, probiotic yogurt, marine-derived omega-3 fatty acids and lovastatin-containing red yeast rice in patients with dyslipidaemia

  • Products such as seaweed, berberine, hawthorn and garlic might confer some limited lipid-lowering benefit in certain patient populations

  • Policosanol, guggulsterone and resveratrol are unlikely to have lipid-lowering effects

  • Functional foods and dietary supplements can be used in addition to pharmacotherapy to provide additional lipid lowering and could potentially reduce medication dose

  • Very few long-term studies have been conducted, which has led to a paucity of information on clinical end points such as mortality and cardiac events

Abstract

Dyslipidaemia is characterized by increased blood levels of total or LDL cholesterol and triglycerides, or decreased HDL cholesterol levels, and is a risk factor for cardiovascular disease. Dyslipidaemia has a high worldwide prevalence, and many patients are turning to alternatives to pharmacotherapy to manage their lipid levels. Lifestyle modification should be emphasized in all patients to reduce cardiovascular risk and can be initiated before pharmacotherapy in primary prevention of cardiovascular disease. Many functional foods and natural health products have been investigated for potential lipid-lowering properties. Those with good evidence for a biochemical effect on plasma lipid levels include soy protein, green tea, plant sterols, probiotic yogurt, marine-derived omega-3 fatty acids and red yeast rice. Other products such as seaweed, berberine, hawthorn and garlic might confer some limited benefit in certain patient groups. Although none of these products can reduce lipid levels to the same extent as statins, most are safe to use in addition to other lifestyle modifications and pharmacotherapy. Natural health products marketed at individuals with dyslipidaemia, such as policosanol, guggulsterone and resveratrol, have minimal definitive evidence of a biochemical benefit. Additional research is required in this field, which should include large, high-quality randomized controlled trials with long follow-up periods to investigate associations with cardiovascular end points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Intestinal action of functional foods and supplements.
Figure 2: Hepatic action of functional foods and supplements.

Similar content being viewed by others

References

  1. World Health Organization. World Health Statistics 2012 http://www.who.int/mediacentre/factsheets/fs310/en/ (2012).

  2. Vazquez-Benitez, G. et al. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: a contemporary analysis. Diabetes Care 38, 905–912 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hubert, H. B., Feinleib, M., McNamara, P. M. & Castelli, W. P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67, 968–977 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Tóth, P. P., Potter, D. & Ming, E. E. Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003–2006. J. Clin. Lipidol. 6, 325–330 (2012).

    Article  PubMed  Google Scholar 

  5. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  6. Law, M. R., Wald, N. J. & Rudnicka, A. R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326, 1423 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, M. et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 2292–2333 (2011).

    Article  PubMed  Google Scholar 

  9. National Cholesterol Education Program (NECP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106, 3143–3421 (2002).

  10. Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).

    Article  PubMed  Google Scholar 

  11. Martirosyan, D. M. & Singh, J. A new definition of functional food by FFC: what makes a new definition unique? Funct. Foods Health Dis. 5, 209–223 (2015).

    Google Scholar 

  12. Department of Health & Human Services, US Food & Drug Administration. What is a dietary supplement? http://www.fda.gov/AboutFDA/Transparency/Basics/ucm195635.htm (2015).

  13. Dickinson, A., Blatman, J., El-Dash, N. & Franco, J. C. Consumer usage and reasons for using dietary supplements: report of a series of surveys. J. Am. Coll. Nutr. 33, 176–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ellegård, L. & Andersson, H. Oat bran rapidly increases bile acid excretion and bile acid synthesis: an ileostomy study. Eur. J. Clin. Nutr. 61, 938–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, W. J., Anderson, J. W. & Jennings, D. Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc. Soc. Exp. Biol. Med. 175, 215–218 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Whitehead, A., Beck, E. J., Tosh, S. & Wolever, T. M. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 100, 1413–1421 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Goff, L. M., Cowland, D. E., Hooper, L. & Frost, G. S. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 23, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Talati, R., Baker, W. L., Pabilonia, M. S., White, C. M. & Coleman, C. I. The effects of barley-derived soluble fiber on serum lipids. Ann. Fam. Med. 7, 157–163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei, Z. H. et al. Time- and dose-dependent effect of psyllium on serum lipids in mild-to-moderate hypercholesterolemia: a meta-analysis of controlled clinical trials. Eur. J. Clin. Nutr. 63, 821–827 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, J. W. et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am. J. Clin. Nutr. 71, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hartley, L., May, M. D., Loveman, E., Colquitt, J. L. & Rees, K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD011472.pub2 (2016).

  22. Anderson, T. J. et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 29, 151–167 (2013).

    Article  PubMed  Google Scholar 

  23. Demonty, I. et al. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 139, 271–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Normén, L., Dutta, P., Lia, A. & Andersson, H. Soy sterol esters and β-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am. J. Clin. Nutr. 71, 908–913 (2000).

    Article  PubMed  Google Scholar 

  25. Baker, W. L., Baker, E. L. & Coleman, C. I. The effect of plant sterols or stanols on lipid parameters in patients with type 2 diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 84, e33–e37 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Malhotra, A. et al. Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD001918.pub3 (2014).

  27. Demonty, I. et al. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: a pooled analysis of 12 randomised controlled trials. Eur. J. Nutr. 52, 153–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Hubacek, J. A., Berge, K. E., Cohen, J. C. & Hobbs, H. H. Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum. Mutat. 18, 359–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. AbuMweis, S. S., Marinangeli, C. P., Frohlich, J. & Jones, P. J. Implementing phytosterols into medical practice as a cholesterol-lowering strategy: overview of efficacy, effectiveness, and safety. Can. J. Cardiol. 30, 1225–1232 (2014).

    Article  PubMed  Google Scholar 

  30. Eslick, G. D., Howe, P. R., Smith, C., Priest, R. & Bensoussan, A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int. J. Cardiol. 136, 4–16 (2009).

    Article  PubMed  Google Scholar 

  31. Hartweg, J., Farmer, A. J., Perera, R., Holman, R. R. & Neil, H. A. Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia 50, 1593–1602 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Wei, M. Y. & Jacobson, T. A. Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis. Curr. Atheroscler. Rep. 13, 474–483 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Hooper, L. et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD003177.pub2 (2004).

  34. Berge, K., Musa-Veloso, K., Harwood, M., Hoem, N. & Burri, L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. Nutr. Res. 34, 126–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Ulven, S. M. et al. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids 46, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Shearer, G. C., Savinova, O. V. & Harris, W. S. Fish oil — how does it reduce plasma triglycerides? Biochim. Biophys. Acta 1821, 843–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Marik, P. E. & Varon, J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin. Cardiol. 32, 365–372 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weintraub, H. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options. Atherosclerosis 230, 381–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. McCarthy, M. FDA bans red yeast rice product. Lancet 351, 1637 (1998).

    Article  Google Scholar 

  40. Cicero, A. F. et al. Red yeast rice improves lipid pattern, high-sensitivity C-reactive protein, and vascular remodeling parameters in moderately hypercholesterolemic Italian subjects. Nutr. Res. 33, 622–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Becker, D. J., French, B., Morris, P. B., Silvent, E. & Gordon, R. Y. Phytosterols, red yeast rice, and lifestyle changes instead of statins: a randomized, double-blinded, placebo-controlled trial. Am. Heart J. 166, 187–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Guardamagna, O., Abello, F., Baracco, V., Stasiowska, B. & Martino, F. The treatment of hypercholesterolemic children: efficacy and safety of a combination of red yeast rice extract and policosanols. Nutr. Metab. Cardiovasc. Dis. 21, 424–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, C. C., Li, T. C. & Lai, M. M. Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur. J. Endocrinol. 153, 679–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Becker, D. J. et al. Simvastatin versus therapeutic lifestyle changes and supplements: randomized primary prevention trial. Mayo Clin. Proc. 83, 758–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Becker, D. J. et al. Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann. Intern. Med. 150, 830–839 (2009).

    Article  PubMed  Google Scholar 

  46. Halbert, S. C. et al. Tolerability of red yeast rice (2,400 mg twice daily) versus pravastatin (20 mg twice daily) in patients with previous statin intolerance. Am. J. Cardiol. 105, 198–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Hargrove, J. L., Greenspan, P. & Hartle, D. K. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp. Biol. Med. (Maywood) 229, 215–226 (2004).

    Article  CAS  Google Scholar 

  48. Castaño, G. et al. Comparison of the efficacy and tolerability of policosanol with atorvastatin in elderly patients with type II hypercholesterolaemia. Drugs Aging 20, 153–163 (2003).

    Article  PubMed  Google Scholar 

  49. Torres, O. et al. Treatment of hypercholesterolemia in NIDDM with policosanol. Diabetes Care 18, 393–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Francini-Pesenti, F., Beltramolli, D., Dall'acqua, S. & Brocadello, F. Effect of sugar cane policosanol on lipid profile in primary hypercholesterolemia. Phytother. Res. 22, 318–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, J. T., Wesley, R., Shamburek, R. D., Pucino, F. & Csako, G. Meta-analysis of natural therapies for hyperlipidemia: plant sterols and stanols versus policosanol. Pharmacotherapy 25, 171–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Swanson, B. et al. Policosanol for managing human immunodeficiency virus-related dyslipidemia in a medically underserved population: a randomized, controlled clinical trial. Altern. Ther. Health Med. 17, 30–35 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Francini-Pesenti, F., Brocadello, F., Beltramolli, D., Nardi, M. & Caregaro, L. Sugar cane policosanol failed to lower plasma cholesterol in primitive, diet-resistant hypercholesterolaemia: a double blind, controlled study. Complement. Ther. Med. 16, 61–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Lin, Y. et al. Wheat germ policosanol failed to lower plasma cholesterol in subjects with normal to mildly elevated cholesterol concentrations. Metabolism 53, 1309–1314 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Dulin, M. F., Hatcher, L. F., Sasser, H. C. & Barringer, T. A. Policosanol is ineffective in the treatment of hypercholesterolemia: a randomized controlled trial. Am. J. Clin. Nutr. 84, 1543–1548 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Greyling, A., De Witt, C., Oosthuizen, W. & Jerling, J. C. Effects of a policosanol supplement on serum lipid concentrations in hypercholesterolaemic and heterozygous familial hypercholesterolaemic subjects. Br. J. Nutr. 95, 968–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Marinangeli, C. P., Jones, P. J., Kassis, A. N. & Eskin, M. N. Policosanols as nutraceuticals: fact or fiction. Crit. Rev. Food Sci. Nutr. 50, 259–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Kong, W. et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10, 1344–1351 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Dong, B., Li, H., Singh, A. B., Cao, A. & Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem. 290, 4047–4058 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Li, H. et al. Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 284, 28885–28895 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dong, H., Zhao, Y., Zhao, L. & Lu, F. The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med. 79, 437–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Lan, J. et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J. Ethnopharmacol. 161, 69–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Derosa, G., Maffioli, P. & Cicero, A. F. Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert Opin. Biol. Ther. 12, 1113–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Shi, K. Q. et al. Traditional Chinese medicines benefit to nonalcoholic fatty liver disease: a systematic review and meta-analysis. Mol. Biol. Rep. 39, 9715–9722 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Yeh, G. Y., Davis, R. B. & Phillips, R. S. Use of complementary therapies in patients with cardiovascular disease. Am. J. Cardiol. 98, 673–680 (2006).

    Article  PubMed  Google Scholar 

  67. Ha, A. W., Ying, T. & Kim, W. K. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr. Res. Pract. 9, 30–36 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Singh, D. K. & Porter, T. D. Inhibition of sterol 4α-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis. J. Nutr. 136, 759S–764S (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lin, M. C. et al. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. J. Nutr. 132, 1165–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Kwon, M. J. et al. Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Sci. 72, 2953–2964 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Mohammadi, A., Bazrafshani, M. R. & Oshaghi, E. A. Effect of garlic extract on some serum biochemical parameters and expression of npc1l1, abca1, abcg5 and abcg8 genes in the intestine of hypercholesterolemic mice. Indian J. Biochem. Biophys. 50, 500–504 (2013).

    CAS  PubMed  Google Scholar 

  72. Malekpour-Dehkordi, Z. et al. S-Allylcysteine, a garlic compound, increases ABCA1 expression in human THP-1 macrophages. Phytother. Res. 27, 357–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Hwang, Y. P. et al. S-Allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. J. Nutr. Biochem. 24, 1469–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Morihara, N., Hino, A., Yamaguchi, T. & Suzuki, J. I. Aged garlic extract suppresses the development of atherosclerosis in apolipoprotein E-knockout mice. J. Nutr. 146, 460S–463S (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Lau, B. H. Suppression of LDL oxidation by garlic compounds is a possible mechanism of cardiovascular health benefit. J. Nutr. 136, 765S–768S (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Khoo, Y. S. & Aziz, Z. Garlic supplementation and serum cholesterol: a meta-analysis. J. Clin. Pharm. Ther. 34, 133–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Ried, K., Toben, C. & Fakler, P. Effect of garlic on serum lipids: an updated meta-analysis. Nutr. Rev. 71, 282–299 (2013).

    Article  PubMed  Google Scholar 

  78. Zeng, T. et al. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J. Sci. Food Agr. 92, 1892–1902 (2012).

    Article  CAS  Google Scholar 

  79. Reinhart, K. M., Talati, R., White, C. M. & Coleman, C. I. The impact of garlic on lipid parameters: a systematic review and meta-analysis. Nutr. Res. Rev. 22, 39–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Stevinson, C., Pittler, M. H. & Ernst, E. Garlic for treating hypercholesterolemia. A meta-analysis of randomized clinical trials. Ann. Intern. Med. 133, 420–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Kwak, J. S. et al. Garlic powder intake and cardiovascular risk factors: a meta-analysis of randomized controlled clinical trials. Nutr. Res. Pract. 8, 644–654 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mahdavi-Roshan, M. et al. Effect of garlic powder tablet on carotid intima–media thickness in patients with coronary artery disease: a preliminary randomized controlled trial. Nutr. Health 22, 143–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ried, K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: An updated meta-analysis and review. J. Nutr. 146, 389S–396S (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Galeone, C., Tavani, A., Pelucchi, C., Negri, E. & La Vecchia, C. Allium vegetable intake and risk of acute myocardial infarction in Italy. Eur. J. Nutr. 48, 120–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Ulbricht, C. et al. Guggul for hyperlipidemia: a review by the Natural Standard Research Collaboration. Complement. Ther. Med. 13, 279–290 (2005).

    Article  PubMed  Google Scholar 

  86. Urizar, N. L. et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296, 1703–1706 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Cui, J. et al. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J. Biol. Chem. 278, 10214–10220 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Singh, B. B. et al. Ayurvedic and collateral herbal treatments for hyperlipidemia: a systematic review of randomized controlled trials and quasi-experimental designs. Altern. Ther. Health Med. 13, 22–28 (2007).

    PubMed  Google Scholar 

  89. Nohr, L. A., Rasmussen, L. B. & Straand, J. Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study. Complement. Ther. Med. 17, 16–22 (2009).

    Article  PubMed  Google Scholar 

  90. Szapary, P. O. et al. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA 290, 765–772 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Kiechl, S. et al. Alcohol consumption and atherosclerosis: what is the relation? Prospective results from the Bruneck Study. Stroke 29, 900–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5, 493–506 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Guo, R. et al. Resveratrol suppresses oxidised low-density lipoprotein-induced macrophage apoptosis through inhibition of intracellular reactive oxygen species generation, LOX-1, and the p38 MAPK pathway. Cell Physiol. Biochem. 34, 603–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Cho, I. J., Ahn, J. Y., Kim, S., Choi, M. S. & Ha, T. Y. Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochem. Biophys. Res. Commun. 367, 190–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Frankel, E. N., Waterhouse, A. L. & Teissedre, P. L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agr. Food Chem. 43, 890–894 (1995).

    Article  CAS  Google Scholar 

  96. Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 71, 822–835 (2013).

    Article  PubMed  Google Scholar 

  97. Kumar, B. J. & Joghee, N. M. Resveratrol supplementation in patients with type 2 diabetes mellitus: a prospective, open label, randomized controlled trial. Int. Res. J. Pharm. 4, 245–249 (2013).

    Article  CAS  Google Scholar 

  98. Movahed, A. et al. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid. Based Complement. Alternat. Med. 2013, 851267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Goh, K. P. et al. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int. J. Sport Nutr. Exerc. Metab. 24, 2–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Ishimwe, N., Daliri, E. B., Lee, B. H., Fang, F. & Du, G. The perspective on cholesterol-lowering mechanisms of probiotics. Mol. Nutr. Food Res. 59, 94–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Asemi, Z. et al. Effect of daily consumption of probiotic yoghurt on lipid profiles in pregnant women: a randomized controlled clinical trial. J. Matern. Fetal Neonatal Med. 25, 1552–1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Sadrzadeh-Yeganeh, H. et al. The effects of probiotic and conventional yoghurt on lipid profile in women. Br. J. Nutr. 103, 1778–1783 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Fabian, E. & Elmadfa, I. Influence of daily consumption of probiotic and conventional yoghurt on the plasma lipid profile in young healthy women. Ann. Nutr. Metab. 50, 387–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Cho, Y. A. & Kim, J. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 94, e1714 (2015).

    Article  Google Scholar 

  105. Guo, Z. et al. Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 21, 844–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Sun, J. & Buys, N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann. Med. 47, 430–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Holdt, S. L. & Kraan, S. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23, 543–597 (2011).

    Article  CAS  Google Scholar 

  108. Chen, J., Jiang, Y., Ma, K. Y., Chen, F. & Chen, Z. Y. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. J. Agr. Food Chem. 59, 6790–6797 (2011).

    Article  CAS  Google Scholar 

  109. Ku, C. S. et al. Hypolipidemic effect of a blue-green alga (Nostoc commune) is attributed to its nonlipid fraction by decreasing intestinal cholesterol absorption in C57BL/6J mice. J. Med. Food 18, 1214–1222 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chen, Z. et al. 24(S)-Saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRβ agonist. J. Agr. Food Chem. 62, 6130–6137 (2014).

    Article  CAS  Google Scholar 

  111. Kim, M. S., Kim, J. Y., Choi, W. H. & Lee, S. S. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr. Res. Pract. 2, 62–67 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Panlasigui, L. N., Baello, O. Q., Dimatangal, J. M. & Dumelod, B. D. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac. J. Clin. Nutr. 12, 209–214 (2003).

    CAS  PubMed  Google Scholar 

  113. Kondo, I. et al. Association between food group intake and serum total cholesterol in the Japanese population: NIPPON DATA 80/90. J. Epidemiol. 20 (Suppl. 3), S576–S581 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bernstein, A. M., Ding, E. L., Willett, W. C. & Rimm, E. B. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J. Nutr. 142, 99–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, Y., Zhang, L., Geng, Y. & Geng, Y. Hawthorn fruit attenuates atherosclerosis by improving the hypolipidemic and antioxidant activities in apolipoprotein E-deficient mice. J. Atheroscler. Thromb. 21, 119–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Rajendran, S., Deepalakshmi, P. D., Parasakthy, K., Devaraj, H. & Devaraj, S. N. Effect of tincture of Crataegus on the LDL-receptor activity of hepatic plasma membrane of rats fed an atherogenic diet. Atherosclerosis 123, 235–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, Z., Ho, W. K., Huang, Y. & Chen, Z. Y. Hypocholestolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7α-hydroxylase and acyl CoA: cholesterol acyltransferase. Food Res. Int. 35, 885–891 (2002).

    Article  CAS  Google Scholar 

  118. Zhang, Z. et al. Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J. Nutr. 132, 5–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Dalli, E. et al. Crataegus laevigata decreases neutrophil elastase and has hypolipidemic effect: a randomized, double-blind, placebo-controlled trial. Phytomedicine 18, 769–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. US Department of Agriculture. Beverage choices of US adults https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/6_beverage_choices_adults_0708.pdf (2011).

  121. US Department of Agriculture. USDA database for the flavonoid content of selected foods. Release 2.1 https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav02-1.pdf (2007).

  122. Onakpoya, I., Spencer, E., Heneghan, C. & Thompson, M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 24, 823–836 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, A. et al. Green tea catechins decrease total and low-density lipoprotein cholesterol: a systematic review and meta-analysis. J. Am. Diet. Assoc. 111, 1720–1729 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Zheng, X. X. et al. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am. J. Clin. Nutr. 94, 601–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Suzuki-Sugihara, N. et al. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Nutr. Res. 36, 16–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Abe, I. et al. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase. Biochem. Biophys. Res. Commun. 268, 767–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Koo, S. I. & Noh, S. K. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 18, 179–183 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zheng, X. X. et al. Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 97, 750–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Hartley, L. et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD009934.pub2 (2013).

  130. Hooper, L. et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 88, 38–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, D., Chen, C., Wang, Y., Liu, J. & Lin, R. Effect of black tea consumption on blood cholesterol: a meta-analysis of 15 randomized controlled trials. PLoS ONE 9, e107711 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Zhao, Y., Asimi, S., Wu, K., Zheng, J. & Li, D. Black tea consumption and serum cholesterol concentration: systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 34, 612–619 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Tang, J. et al. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br. J. Nutr. 114, 673–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Jenkins, D. J. et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J. Nutr. 140, 2302S–2311S (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Wu, Z. Y., Wu, X. K. & Zhang, Y. W. Relationship of menopausal status and sex hormones to serum lipids and blood pressure. Int. J. Epidemiol. 19, 297–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Mullen, E., Brown, R. M., Osborne, T. F. & Shay, N. F. Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J. Nutr. 134, 2942–2947 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Shukla, A. et al. Isoflavone-poor soy protein alters the lipid metabolism of rats by SREBP-mediated down-regulation of hepatic genes. J. Nutr. Biochem. 18, 313–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Manzoni, C. et al. Subcellular localization of soybean 7S globulin in HepG2 cells and LDL receptor up-regulation by its alpha' constituent subunit. J. Nutr. 133, 2149–2155 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, D. et al. Association of soy food intake with risk and biomarkers of coronary heart disease in Chinese men. Int. J. Cardiol. 172, e285–e287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang, X. et al. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J. Nutr. 133, 2874–2878 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Anderson, J. W. & Bush, H. M. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J. Am. Coll. Nutr. 30, 79–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Qin, Y. et al. Isoflavones for hypercholesterolaemia in adults. Cochrane Database Syst. Rev. http://dx.doi.org/10.1002/14651858.CD009518.pub2 (2013).

  143. Reynolds, K. et al. A meta-analysis of the effect of soy protein supplementation on serum lipids. Am. J. Cardiol. 98, 633–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Taku, K. et al. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 85, 1148–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Tokede, O. A., Onabanjo, T. A., Yansane, A., Gaziano, J. M. & Djoussé, L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br. J. Nutr. 114, 831–843 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Yang, B. et al. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 20, 593–602 (2011).

    CAS  PubMed  Google Scholar 

  147. Zhan, S. & Ho, S. C. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 81, 397–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Jenkins, D. J. et al. Effects of a dietary portfolio of cholesterol-lowering foods versus lovastatin on serum lipids and C-reactive protein. JAMA 290, 502–510 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Sax, J. K. Dietary supplements are not all safe and not all food: How the low cost of dietary supplements preys on the consumer. Am. J. Law Med. 41, 374–394 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

R.A.H. is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Research Chair in Human Genetics and the Martha G. Blackburn Chair in Cardiovascular Research. He has received operating grants from the Canadian Institutes of Health Research (Foundation Grant), the Heart and Stroke Foundation of Ontario (T-000353) and Genome Canada through Genome Quebec (award 4530).

Author information

Authors and Affiliations

Authors

Contributions

P.M.H. and R.A.H. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Robert A. Hegele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Animal studies on seaweed feeding (PDF 214 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, P., Hegele, R. Functional foods and dietary supplements for the management of dyslipidaemia. Nat Rev Endocrinol 13, 278–288 (2017). https://doi.org/10.1038/nrendo.2016.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.210

  • Springer Nature Limited

This article is cited by

Navigation