Skip to main content

Advertisement

Log in

Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology

  • Review Article
  • Published:

From Nature Reviews Cardiology

View current issue Sign up to alerts

Key Points

  • Sarco/endoplasmic reticulum–mitochondria communication and mitochondrial dynamics are essential regulators of mitochondrial function, cellular metabolism, and calcium homeostasis

  • Sarco/endoplasmic reticulum–mitochondria contacts and mitochondrial dynamics modulate myocardial contractility and vascular smooth muscle cell differentiation

  • Alterations in sarco/endoplasmic reticulum–mitochondria communication and in mitochondrial network morphology are implicated in several cardiovascular pathologies, including heart failure, coronary artery disease, and pulmonary hypertension

  • More studies are required to define the role that alterations in sarco/endoplasmic–mitochondria contacts and mitochondrial dynamics have in the pathogenesis of cardiovascular diseases

Abstract

Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum–mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum–mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Key components and functions of MAM.
Figure 2: Organelle visualization in the cardiovascular system.
Figure 3: Organelle dynamics and phenotypic changes in the cardiovascular system.

Similar content being viewed by others

References

  1. Buchwald, A. et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur. Heart J. 11, 509–516 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Graham, B. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet. 16, 226–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, E. et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 128, 702–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Dromparis, P. & Michelakis, E. D. Mitochondria in vascular health and disease. Annu. Rev. Physiol. 75, 95–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Pernas, L. & Scorrano, L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Bravo-Sagua, R. et al. Organelle communication: signaling crossroads between homeostasis and disease. Int. J. Biochem. Cell Biol. 50, 55–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Copeland, D. E. & Dalton, A. J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol. 5, 393–396 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256 (1990).

    CAS  PubMed  Google Scholar 

  10. Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorn, G. W. II & Maack, C. SR and mitochondria: calcium cross-talk between kissing cousins. J. Mol. Cell. Cardiol. 55, 42–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Safiedeen, Z., Andriantsitohaina, R. & Martinez, M. C. Dialogue between endoplasmic reticulum and mitochondria as a key actor of vascular dysfunction associated to metabolic disorders. Int. J. Biochem. Cell Biol. 77, 10–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Herring, B. P., El-Mounayri, O., Gallagher, P. J., Yin, F. & Zhou, J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am. J. Physiol. Cell Physiol. 291, C817–C827 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Orchard, C. & Brette, F. T-tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc. Res. 77, 237–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Walsh, C. et al. Modulation of calcium signalling by mitochondria. Biochim. Biophys. Acta 1787, 1374–1382 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, T. & Brown, J. H. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc. Res. 63, 476–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Terasaki, M., Chen, L. B. & Fujiwara, K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103, 1557–1568 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Friedman, J. R., Webster, B. M., Mastronarde, D. N., Verhey, K. J. & Voeltz, G. K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lynch, C. D. et al. Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions. Mol. Biol. Cell 22, 1263–1273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joensuu, M. et al. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol. Biol. Cell 25, 1111–1126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chhabra, E. S., Ramabhadran, V., Gerber, S. A. & Higgs, H. N. INF2 is an endoplasmic reticulum-associated formin protein. J. Cell Sci. 122, 1430–1440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. GrandPré, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  PubMed  Google Scholar 

  26. Oertle, T., Huber, C., Van der Putten, H. & Schwab, M. E. Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J. Mol. Biol. 325, 299–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Shibata, Y. et al. The reticulon and Dp1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283, 18892–18904 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Yoon, Y., Krueger, E. W., Oswald, B. J., Mcniven, A. & Mcniven, M. A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23, 5409–5420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rojo, M., Legros, F., Chateau, D. & Lombès, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002).

    CAS  PubMed  Google Scholar 

  34. Olichon, A. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Boldogh, I. R. & Pon, L. A. Mitochondria on the move. Trends Cell Biol. 17, 502–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Rusiñol, A. E., Cui, Z., Chen, M. & Vance, J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J. Biol. Chem. 269, 27494–27502 (1994).

    PubMed  Google Scholar 

  39. Shiao, Y., Lupo, G. & Vance, J. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J. Biol. Chem. 270, 11190–11198 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Steenbergen, R. et al. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J. Biol. Chem. 280, 40032–40040 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Galmes, R. et al. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 17, 800–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ardail, D. et al. The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem. J. 371, 1013–1019 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galluzzi, L., Kepp, O., Trojel-Hansen, C. & Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Chalmers, S. & Nicholls, D. G. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062–19070 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Gunter, T. E., Gunter, K. K., Sheu, S. S. & Gavin, C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313–C339 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Mallilankaraman, K. et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151, 630–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giacomello, M. et al. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152 (2011). This paper shows that ER–mitochondria contact remodelling supports a metabolic adaptive response during cellular stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bravo-Sagua, R. et al. Cell death and survival through the endoplasmic reticulum-mitochondrial axis. Curr. Mol. Med. 13, 317–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laude, A. J. & Simpson, A. W. Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS J. 276, 1800–1816 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Deak, A. et al. Inositol-1,4,5-trisphosphate (IP3)-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J. Cell Sci. 127, 2944–2955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilabert, J. A., Bakowski, D. & Parekh, A. B. Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 20, 2672–2679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Glitsch, M. D., Bakowski, D. & Parekh, A. B. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. 21, 6744–6754 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parekh, A. B. Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J. Physiol. 547, 333–348 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Samanta, K., Douglas, S. & Parekh, A. B. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS ONE 9, e101188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arasaki, K. et al. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev. Cell 32, 304–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4, e08828 (2015).

    Article  PubMed Central  Google Scholar 

  63. Lewis, S., Uchiyama, L. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, W. et al. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy 12, 1675–1676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. García-Pérez, C., Schneider, T. G., Hajnóczky, G. & Csordás, G. Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points. Am. J. Physiol. Heart Circ. Physiol. 301, H1907–H1915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gatica, D., Chiong, M., Lavandero, S. & Klionsky, D. J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 116, 456–467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Betz, C. et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. USA 110, 12526–12534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lynes, E. M. et al. Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. J. Cell Sci. 126, 3893–3903 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Marriott, K.-S. C., Prasad, M., Thapliyal, V. & Bose, H. S. σ-1 receptor at the mitochondrial-associated endoplasmic reticulum membrane is responsible for mitochondrial metabolic regulation. J. Pharmacol. Exp. Ther. 343, 578–586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gilady, S. Y. et al. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Booth, D. M., Enyedi, B., Geiszt, M., Várnai, P. & Hajnóczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240–248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Hayashi, T. & Fujimoto, M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol. Pharmacol. 77, 517–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sala-Vila, A. et al. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep. 6, 27351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Quest, A. F. G., Gutierrez-Pajares, J. L. & Torres, V. A. Caveolin-1: an ambiguous partner in cell signalling and cancer. J. Cell. Mol. Med. 12, 1130–1150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dremina, E., Sharov, V. & Schöneich, C. Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 45, 175–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Garofalo, T. et al. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy 12, 917–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mendes, C. et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J. Biol. Chem. 280, 40892–40900 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Eisner, V., Csordás, G. & Hajnóczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle — pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci. 126, 2965–2978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, Y. et al. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca2+ crosstalk. Circ. Res. 111, 863–875 (2012). This paper shows that MFN2 is responsible for SR–mitochondria communication in both Drosophila and mouse hearts, allowing efficient Ca2+ transfer and the consequent regulation of mitochondrial metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seidlmayer, L. K. et al. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum–mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca 2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovasc. Res. 112, 491–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Beutner, G., Sharma, V. K., Giovannucci, D. R., Yule, D. I. & Sheu, S. S. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 276, 21482–21488 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Filadi, R. et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc. Natl Acad. Sci. USA 112, E2174–E2181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Naon, D. et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether. Proc. Natl Acad. Sci. USA 113, 11249–11254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cosson, P., Marchetti, A., Ravazzola, M. & Orci, L. Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS ONE 7, e46293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Sutendra, G. et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci. Transl Med. 3, 88ra55 (2011). This paper shows the participation of dysfunctional SR–mitochondria communication in the pathogenesis of PAH mediated by ER stress and upregulation of the ER-remodelling protein NOGO B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bravo, R. et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int. Rev. Cell Mol. Biol. 301, 215–290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simmen, T. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Myhill, N. et al. The subcellular distribution of calnexin is mediated by PACS-2. Mol. Biol. Cell 19, 2777–2788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bravo-Sagua, R. et al. mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling. Sci. Rep. 6, 36394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Volkmann, N., Marassi, F. M., Newmeyer, D. D. & Hanein, D. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ. 21, 206–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Williams, A. et al. The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J. Bioenerg. Biomembr. 48, 211–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doghman-Bouguerra, M. et al. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 17, 1264–1280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, G.-H., Lee, H.-Y., Li, B., Kim, H.-R. & Chae, H.-J. Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci. Rep. 4, 5194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bononi, A. et al. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20, 1631–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, H. et al. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int. J. Biol. Sci. 10, 1072–1083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marini, E. S. et al. The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria. Cell Death Differ. 22, 1131–1143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marchi, S. et al. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Mol. Cell. Oncol. 1, e956469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bassani, R., Bassani, J. & Bers, D. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J. Physiol. 453, 591–608 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Negretti, N., O'Neill, S. & Eisner, D. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc. Res. 27, 1826–1830 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Szalai, G., Csordas, G., Hantash, B. M., Thomas, A. P. & Hajnoczky, G. Calcium signal transmission between ryanodine receptors and mitochondria. J. Biol. Chem. 275, 15305–15313 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Robert, V. et al. Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J. 20, 4998–5007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, X. et al. Measuring local gradients of intramitochondrial [Ca2+] in cardiac myocytes during sarcoplasmic reticulum Ca2+ release. Circ. Res. 112, 424–431 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Drago, I., De Stefani, D., Rizzuto, R. & Pozzan, T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc. Natl Acad. Sci. USA 109, 12986–12991 (2012). This paper shows that modulation of mitochondrial Ca2+ uptake capacity shapes cytosolic Ca2+ kinetics during cardiomyocyte beating.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fieni, F., Lee, S. B., Jan, Y. N. & Kirichok, Y. Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat. Commun. 3, 1317 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Williams, G. S., Boyman, L., Chikando, A. C., Khairallah, R. J. & Lederer, W. J. Mitochondrial calcium uptake. Proc. Natl Acad. Sci. USA 110, 10479–10486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Andrienko, T. N., Picht, E. & Bers, D. M. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J. Mol. Cell. Cardiol. 46, 1027–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharma, V. K., Ramesh, V., Franzini-Armstrong, C. & Sheu, S.-S. S. Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J. Bioenerg. Biomembr. 32, 97–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. García-Pérez, C., Hajnóczky, G. & Csordás, G. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J. Biol. Chem. 283, 32771–32780 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Papanicolaou, K. N. et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol. Cell. Biol. 31, 1309–1328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Parra, V. et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc. Res. 77, 387–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Kuzmicic, J. et al. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochem. Pharmacol. 91, 323–336 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Parra, V. et al. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway. Diabetes 63, 75–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, Y., Liu, Y. & Dorn, G. W. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ. Res. 109, 1327–1331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Papanicolaou, K. N. et al. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ. Res. 111, 1012–1026 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Papanicolaou, K. N. et al. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am. J. Physiol. Heart Circ. Physiol. 302, H167–H179 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Piquereau, J. et al. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc. Res. 94, 408–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Le Page, S. et al. Increase in cardiac ischemia-reperfusion injuries in Opa1+/− mouse model. PLoS ONE 11, e0164066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wai, T. et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350, aad0116 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ikeda, Y. et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116, 264–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Gilbert, G., Ducret, T., Marthan, R., Savineau, J. P. & Quignard, J. F. Stretch-induced Ca2+ signalling in vascular smooth muscle cells depends on Ca2+ store segregation. Cardiovasc. Res. 103, 313–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Muñoz, E. et al. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/Orai channels normally prevented by mitochondria. J. Biol. Chem. 286, 16186–16196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Morales, P. E. et al. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling. Biochem. Biophys. Res. Commun. 446, 410–416 (2014). This paper highlights the role of SR–mitochondria Ca2+ transfer in regulating mitochondrial activity in vascular smooth muscle cells along with the putative signalling pathway involved.

    Article  CAS  PubMed  Google Scholar 

  135. Torres, G. et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem. Pharmacol. 104, 52–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, L. et al. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc. Res. 106, 272–283 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Salabei, J. K. & Hill, B. G. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol. 1, 542–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, K.-H. et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6, 872–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Gaziano, T. A., Bitton, A., Anand, S., Abrahams-Gessel, S. & Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol. 35, 72–115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Hausenloy, D. J. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J. Mol. Cell. Cardiol. 35, 339–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Ong, S.-B., Samangouei, P., Kalkhoran, S. B. & Hausenloy, D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J. Mol. Cell. Cardiol. 78, 23–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Paillard, M. et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128, 1555–1565 (2013). This paper implicates SR–mitochondria interaction as an essential mechanism in cardiac reperfusion injury through Ca2+ transfer between these organelles.

    Article  CAS  PubMed  Google Scholar 

  144. Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 116, 674–699 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Hausenloy, D. J., Lim, S. Y., Ong, S. G., Davidson, S. M. & Yellon, D. M. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc. Res. 88, 67–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gomez, L. et al. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ. 23, 313–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Tanno, M. et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J. Biol. Chem. 289, 29285–29296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu, F. et al. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation. J. Biomed. Sci. 17, 50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thygesen, K., Alpert, J. S., Jaffe, A. S. & White, H. D. Diagnostic application of the universal definition of myocardial infarction in the intensive care unit. Curr. Opin. Crit. Care 14, 543–548 (2008).

    Article  PubMed  Google Scholar 

  150. Ong, S.-B. et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012–2022 (2010). This paper first showed an approach to treating ischaemia–reperfusion injury through the pharmacological modulation of mitochondrial dynamics.

    Article  CAS  PubMed  Google Scholar 

  151. Zepeda, R. et al. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J. Cardiovasc. Pharmacol. 63, 477–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Aldakkak, M., Stowe, D., Heisner, J., Spence, M. & Camara, A. K. S. Enhanced Na+/H+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. J. Cardiovasc. Pharmacol. 52, 236–244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hall, A. R. et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 7, e2238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, L., Gong, Q., Stice, J. P. & Knowlton, A. A. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc. Res. 84, 91–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gutiérrez, T. et al. Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun. Signal. 12, 68 (2014). This paper first reported dysfunctional SR–mitochondria communication in cultured hypertrophic cardiomyocytes.

    PubMed  PubMed Central  Google Scholar 

  156. Santulli, G., Xie, W., Reiken, S. R. & Marks, A. R. Mitochondrial calcium overload is a key determinant in heart failure. Proc. Natl Acad. Sci. USA 112, 11389–11394 (2015). This paper reveals considerable participation of leaky RYR2 channels in mitochondrial Ca2+ overload and dysfunction in HF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chaanine, A. H. et al. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ. Heart Fail. 6, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lu, F. H. et al. Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure. Cell. Physiol. Biochem. 31, 728–743 (2013).

    Article  PubMed  Google Scholar 

  159. Fernandez-Sanz, C. et al. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis. 5, e1573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shimizu, I. & Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 97, 245–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Bround, M. J. et al. Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J. Biol. Chem. 288, 18975–18986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Despa, S., Islam, M., Weber, C., Pogwizd, S. & Bers, D. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105, 2543–2548 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Maack, C. et al. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res. 99, 172–182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kohlhaas, M. et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121, 1606–1613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, T. & Rourke, B. O. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ. Res. 103, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hohendanner, F. et al. Intracellular dyssynchrony of diastolic cytosolic [Ca2+] decay in ventricular cardiomyocytes in cardiac remodeling and human heart failure. Circ. Res. 113, 527–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Michels, G. et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119, 2435–2443 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Fang, L. et al. Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci. 80, 2154–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Goh, K. Y. et al. Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes. Cardiovasc. Res. 109, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Pennanen, C. et al. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J. Cell Sci. 127, 2659–2671 (2014). This paper shows that mitochondrial fission is sufficient to induce hypertrophy in cultured cardiomyocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Givvimani, S. et al. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS ONE 7, e32388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shirakabe, A. et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Galiè, N. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 37, 67–119 (2016).

    Article  PubMed  Google Scholar 

  174. Paulin, R. & Michelakis, E. D. The metabolic theory of pulmonary arterial hypertension. Circ. Res. 115, 148–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Sutendra, G. & Michelakis, E. D. The metabolic basis of pulmonary arterial hypertension. Cell Metab. 19, 558–573 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Chiong, M. et al. Influence of glucose metabolism on vascular smooth muscle cell proliferation. Vasa 42, 8–16 (2013).

    Article  PubMed  Google Scholar 

  177. Cottrill, K. A. & Chan, S. Y. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur. J. Clin. Invest. 43, 855–865 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Dromparis, P. et al. Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 127, 115–125 (2013). This paper shows that small-molecule chemical chaperones both prevent and reverse PAH by attenuating ER stress and NOGO B upregulation.

    Article  CAS  PubMed  Google Scholar 

  179. Dromparis, P. et al. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ. Res. 113, 126–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Denton, M., Randle, P. J. & Martin, B. R. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem. J. 128, 161–163 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cooper, B. R. H., Randle, P. J. & Denton, R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem. J. 143, 625–641 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Luongo, T. S. et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12, 23–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rasmussen, T. P. et al. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proc. Natl Acad. Sci. USA 112, 9129–9134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mammucari, C. et al. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep. 10, 1269–1279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. McMurtry, M. S. et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95, 830–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Ryan, J., Dasgupta, A., Huston, J., Chen, K. & Archer, S. L. Mitochondrial dynamics in pulmonary arterial hypertension. J. Mol. Med. (Berl.) 93, 229–242 (2015).

    Article  CAS  Google Scholar 

  189. Marsboom, G. et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ. Res. 110, 1484–1497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ryan, J. J. et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 187, 865–878 (2013). This paper reveals that animal models and patients with PAH have reduced levels of MFN2 and that its overexpression reverses experimental PAH in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guo, Y.-H. et al. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit. Biochem. Biophys. Res. Commun. 363, 411–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Guo, X. et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ. Res. 101, 1113–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. He, C. et al. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells. J. Huazhong Univ. Sci. Technolog. Med. Sci. 33, 212–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Li, D., Li, X., Guan, Y. & Guo, X. Mitofusin-2-mediated tethering of mitochondria and endoplasmic reticulum promotes cell cycle arrest of vascular smooth muscle cells in G0/G1 phase. Acta Biochim. Biophys. Sin. (Shanghai) 47, 441–450 (2015).

    Article  CAS  Google Scholar 

  195. Maimaitijiang, A., Zhuang, X., Jiang, X. & Li, Y. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 471, 474–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Kendall, D. M. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–1091 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Grieve, D. J., Cassidy, R. S. & Green, B. D. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control? Br. J. Pharmacol. 157, 1340–1351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hirano, T. & Mori, Y. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals. J. Diabetes Investig. 7 (Suppl. 1), 80–86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Györke, S. & Terentyev, D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc. Res. 77, 245–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Narayanan, D., Adebiyi, A. & Jaggar, J. H. Inositol trisphosphate receptors in smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 302, H2190–H2210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Periasamy, M., Bhupathy, P. & Babu, G. J. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res. 77, 265–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Chiong, M. et al. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front. Cell Dev. Biol. 2, 72 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Berridge, M. J. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. López-Crisosto, C. et al. ER-to-mitochondria miscommunication and metabolic diseases. Biochim. Biophys. Acta 1852, 2096–2105 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Morales, C. R., Pedrozo, Z., Lavandero, S. & Hill, J. A. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid. Redox Signal. 20, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Arany, Z. et al. Transcriptional coactivator PGC-1alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 1, 259–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Vega, R. B., Horton, J. L. & Kelly, D. P. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116, 1820–1834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Saito, T. & Sadoshima, J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116, 1477–1490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fortini, P. et al. The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis. Cell Death Dis. 7, e2168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lira, V. A. et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 27, 4184–4193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Vainshtein, A., Tryon, L. D., Pauly, M. & Hood, D. A. The role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am. J. Physiol. Cell Physiol. 308, C710–C719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Twig, G. & Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14, 1939–1951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lee, Y., Lee, H.-Y., Hanna, R. A. & Gustafsson, Å. B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, H1924–1931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Song, M. et al. Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ. Res. 117, 346–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Song, M., Mihara, K., Chen, Y., Scorrano, L. & Dorn, G. W. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21, 273–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Comision Nacional de Ciencia y Tecnologia (CONICYT), Chile: FONDECYT 1161156 to S.L., FONDECYT 3130749 to C.P., FONDECYT 3160226 to R.B.S., FONDAP 15130011 to M.C., A.F.G.Q., and S.L. C.L.C., C.V.T., and P.E.M. hold CONICYT PhD fellowships. We thank Valentina Parra (University of Chile, Santiago, Chile) for the cardiomyocyte images used in this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lavandero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Krebs cycle

Consecutive sequence of enzymatic reactions that generate a proton gradient across the inner mitochondrial membrane for ATP generation.

Programmed cell death

Series of events leading to cell death by coordinated dismantling of components, as is the case for apoptosis.

Mitophagy

Selective elimination of defective mitochondria through lysosomal degradation.

Mitochondria-associated ER membranes (MAM)

Specialized subdomains of the endoplasmic reticulum (ER) connected to mitochondria through protein tethers.

Chaperones

Molecules that favour correct protein folding.

ER stress

Response triggered by accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen when protein-handling capacity is exceeded.

Thapsigargin

Noncompetitive inhibitor of the sarco/endoplasmic reticulum calcium ATPase (SERCA).

Caffeine

Drug used to induce ryanodine receptor-mediated Ca2+ release.

Subplasmalemmal mitochondria

Mitochondria located in apposition to the plasma membrane.

Mitochondrial permeability transition pore (mPTP)

Large channel that spans both inner and outer mitochondrial membranes, whose opening leads to loss of organelle integrity.

Warburg effect

Metabolic state wherein cells predominantly produce energy by glycolysis instead of mitochondrial pyruvate oxidation.

Incretin

Hormone released by the digestive tract in response to food ingestion that stimulates pancreatic insulin secretion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Crisosto, C., Pennanen, C., Vasquez-Trincado, C. et al. Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14, 342–360 (2017). https://doi.org/10.1038/nrcardio.2017.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.23

  • Springer Nature Limited

This article is cited by

Navigation