Skip to main content

Advertisement

Log in

Advances and challenges in targeting FGFR signalling in cancer

  • Review Article
  • Published:

From Nature Reviews Cancer

View current issue Sign up to alerts

Key Points

  • Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in many developmental and physiological processes through regulation of cell survival and proliferation.

  • Deregulation of FGFR signalling is frequently observed in many types of cancer.

  • Oncogenic FGFR signalling can be deregulated by various mechanisms, such as gene amplification, activating mutations and chromosomal translocations, as well as abnormal FGF ligand-mediated signalling.

  • Downstream FGF signalling frequently activates the MAPK–ERK pathway, and in some contexts the PI3K–AKT and Janus kinase–signal transducer and activator of transcription (JAK–STAT) signalling pathways.

  • Numerous targeted therapies, including small-molecule tyrosine kinase inhibitors (TKIs), FGFR-blocking antibodies and ligand traps, have been developed to attenuate FGFR signalling in cancer, with potent anti-proliferative effects reported in preclinical models.

  • Targeting FGFR in the clinic has had variable results, and identifying cancers that are addicted to the FGFR pathway will be crucial for successful targeting of FGFR in the clinic.

  • Off-target effects of multi-targeting TKIs and the toxicity of selective FGFR inhibitors are limiting factors for effective FGFR targeting. New-generation TKIs and anti-FGFR antibodies offer a promising strategy to overcome the lack of efficacy.

  • Delineating individual contributions of FGFR aberrations to specific cancers would aid better patient stratification and guide more effective treatment strategies to delay the emergence of drug resistance.

Abstract

Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate numerous cellular processes. Deregulation of FGFR signalling is observed in a subset of many cancers, making activated FGFRs a highly promising potential therapeutic target supported by multiple preclinical studies. However, early-phase clinical trials have produced mixed results with FGFR-targeted cancer therapies, revealing substantial complexity to targeting aberrant FGFR signalling. In this Review, we discuss the increasing understanding of the differences between diverse mechanisms of oncogenic activation of FGFR, and the factors that determine response and resistance to FGFR targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Mechanisms of oncogenic fibroblast growth factor receptor signalling.
Figure 2: Structure of fibroblast growth factor receptor and frequency of the receptors' somatic mutations with their relative locations.
Figure 3: Mechanisms of resistance to fibroblast growth factor receptor inhibitors.

Similar content being viewed by others

References

  1. Sleeman, M. et al. Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271, 171–182 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. Itoh, N. & Ornitz, D. M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130 (2011).

    Article  PubMed  CAS  Google Scholar 

  3. Dienstmann, R. et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol. 25, 552–563 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Dieci, M. V., Arnedos, M., Andre, F. & Soria, J. C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov. 3, 264–279 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Smyth, E. C. et al. Phase II multicenter proof of concept study of AZD4547 in FGFR amplified tumours. J. Clin. Oncol. 33 (Suppl.), abstr. 2508 (2015).

    Article  Google Scholar 

  6. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015). This paper outlines the results from a clinical trial of an FGFR inhibitor that targets all four receptors.

    Article  PubMed  CAS  Google Scholar 

  7. Andre, F. et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin. Cancer Res. 19, 3693–3702 (2013). Dovitinib is a multi-targeting TKI that also targets FGFRs and is currently being investigated in phase III clinical trials. This study combines preclinical and clinical data of its action in breast cancer.

    Article  PubMed  CAS  Google Scholar 

  8. Konecny, G. E. et al. Second-line dovitinib (TKI258) in patients with FGFR2-mutated or FGFR2-non-mutated advanced or metastatic endometrial cancer: a non-randomised, open-label, two-group, two-stage, phase 2 study. Lancet Oncol. 16, 686–694 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Yang, W. et al. Prognostic value of FGFR1 gene copy number in patients with non-small cell lung cancer: a meta-analysis. J. Thorac. Dis. 6, 803–809 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl Med. 2, 62ra93 (2010). This paper reports focal amplification of FGFR1 in patients with squamous-cell lung cancer, who represent a population that could benefit from anti-FGFR therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cihoric, N. et al. Prognostic role of FGFR1 amplification in early-stage non-small cell lung cancer. Br. J. Cancer 110, 2914–2922 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Reis-Filho, J. S. et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin. Cancer Res. 12, 6652–6662 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Courjal, F. et al. Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 57, 4360–4367 (1997).

    PubMed  CAS  Google Scholar 

  15. Lee, H. J. et al. Low prognostic implication of fibroblast growth factor family activation in triple-negative breast cancer subsets. Ann. Surg. Oncol. 21, 1561–1568 (2014).

    Article  PubMed  Google Scholar 

  16. Singleton, K. R. et al. Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC. Cancer Res. 75, 4398–4406 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Turner, N. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70, 2085–2094 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mohammadi, M. et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl Acad. Sci. USA 105, 8713–8717 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campbell, J. et al. Large-scale profiling of kinase dependencies in cancer cell lines. Cell Rep. 14, 2490–2501 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto, K. et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br. J. Cancer 106, 727–732 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Turner, N. et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ueda, T. et al. Deletion of the carboxyl-terminal exons of K-sam/FGFR2 by short homology-mediated recombination, generating preferential expression of specific messenger RNAs. Cancer Res. 59, 6080–6086 (1999).

    PubMed  CAS  Google Scholar 

  25. Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016). References 20 and 25 combine preclinical and clinical trial evidence of FGFR2 amplification as a biomarker for addiction to the FGFR pathway and response to FGFR-targeted therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Verstraete, M. et al. In vitro and in vivo evaluation of the radiosensitizing effect of a selective FGFR inhibitor (JNJ-42756493) for rectal cancer. BMC Cancer 15, 946 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reynisdottir, I. et al. High expression of ZNF703 independent of amplification indicates worse prognosis in patients with luminal B breast cancer. Cancer Med. 2, 437–446 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Baykara, O., Bakir, B., Buyru, N., Kaynak, K. & Dalay, N. Amplification of chromosome 8 genes in lung cancer. J. Cancer 6, 270–275 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang, X. et al. Luminal breast cancer cell lines overexpressing ZNF703 are resistant to tamoxifen through activation of Akt/mTOR signaling. PLoS ONE 8, e72053 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fischbach, A. et al. Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology 66, 639–649 (2015).

    Article  PubMed  Google Scholar 

  31. Tomlinson, D. C., Baldo, O., Harnden, P. & Knowles, M. A. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol. 213, 91–98 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Helsten, T. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 22, 259–267 (2015). This paper reports sequencing results from a large patient sample size and identifies frequencies of genomic FGFR aberrations in various cancer types.

    Article  PubMed  CAS  Google Scholar 

  33. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ibrahimi, O. A. et al. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum. Mol. Genet. 13, 2313–2324 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. Ibrahimi, O. A. et al. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc. Natl Acad. Sci. USA 98, 7182–7187 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wilkie, A. O., Patey, S. J., Kan, S. H., van den Ouweland, A. M. & Hamel, B. C. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am. J. Med. Genet. 112, 266–278 (2002).

    Article  PubMed  Google Scholar 

  38. Tanizaki, J. et al. Identification of oncogenic and drug-sensitizing mutations in the extracellular domain of FGFR2. Cancer Res. 75, 3139–3146 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Rosty, C. et al. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol. Cancer 4, 15 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bernard-Pierrot, I. et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 27, 740–747 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. Chen, H. et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell 27, 717–730 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hart, K. C. et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19, 3309–3320 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. Taylor, J. G. VI et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest. 119, 3395–3407 (2009).

    PubMed  CAS  Google Scholar 

  45. Andersen, S. W. et al. Breast cancer susceptibility associated with rs1219648 (fibroblast growth factor receptor 2) and postmenopausal hormone therapy use in a population-based United States study. Menopause 20, 354–358 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Meyer, K. B. et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol. 6, e108 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Frullanti, E. et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur. J. Cancer Prev. 20, 340–347 (2011).

    CAS  Google Scholar 

  49. Bange, J. et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res. 62, 840–847 (2002).

    PubMed  CAS  Google Scholar 

  50. Ulaganathan, V. K., Sperl, B., Rapp, U. R. & Ullrich, A. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570–574 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu, Y. M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013). This study reports oncogenic FGFR fusions across tumour types, which represent putative biomarkers of response to FGFR therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ha, G. H., Kim, J. L. & Breuer, E. K. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett. 336, 24–33 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Hood, F. E. & Royle, S. J. Pulling it together: the mitotic function of TACC3. Bioarchitecture 1, 105–109 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Williams, S. V., Hurst, C. D. & Knowles, M. A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 22, 795–803 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Sia, D. et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 6, 6087 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Arai, Y. et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59, 1427–1434 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Giacomini, A. et al. A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers. Oncotarget 6, 13790–13802 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wan, X. et al. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Sci. Transl Med. 6, 252ra122 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tanner, Y. & Grose, R. P. Dysregulated FGF signalling in neoplastic disorders. Semin. Cell Dev. Biol. 53, 126–135 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Tuomela, J. & Harkonen, P. Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod. Biol. 14, 16–24 (2014).

    Article  PubMed  Google Scholar 

  62. Feng, S., Dakhova, O., Creighton, C. J. & Ittmann, M. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res. 73, 2551–2562 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nagamatsu, H. et al. FGF19 promotes progression of prostate cancer. Prostate 75, 1092–1101 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Feng, S., Wang, J., Zhang, Y., Creighton, C. J. & Ittmann, M. FGF23 promotes prostate cancer progression. Oncotarget 6, 17291–17301 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Lee, E. K. et al. FGF23: mediator of poor prognosis in a sizeable subgroup of patients with castration-resistant prostate cancer presenting with severe hypophosphatemia? Med. Hypotheses 83, 482–487 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Schuuring, E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes — a review. Gene 159, 83–96 (1995).

    Article  PubMed  CAS  Google Scholar 

  67. Karlsson, E. et al. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer 50, 775–787 (2011).

    Article  PubMed  CAS  Google Scholar 

  68. Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J. & Sutherland, R. L. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res. Treat. 78, 323–335 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160, 2295–2307 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhou, M. et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 74, 3306–3316 (2014).

    Article  PubMed  CAS  Google Scholar 

  72. Wu, A. L. et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE 6, e17868 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chen, J. et al. TGF-beta1 and FGF2 stimulate the epithelial-mesenchymal transition of HERS cells through a MEK-dependent mechanism. J. Cell. Physiol. 229, 1647–1659 (2014).

    Article  PubMed  CAS  Google Scholar 

  74. Shirakihara, T. et al. TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 30, 783–795 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fillmore, C. M. et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc. Natl Acad. Sci. USA 107, 21737–21742 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Acevedo, V. D. et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12, 559–571 (2007).

    Article  PubMed  CAS  Google Scholar 

  77. Marek, L. et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol. 75, 1 96–207 (2009).

    Article  CAS  Google Scholar 

  78. Sharpe, R. et al. FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 17, 5275–5286 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Abramson, V. G., Lehmann, B. D., Ballinger, T. J. & Pietenpol, J. A. Subtyping of triple-negative breast cancer: implications for therapy. Cancer 121, 8–16 (2015).

    Article  PubMed  Google Scholar 

  80. Ruotsalainen, T., Joensuu, H., Mattson, K. & Salven, P. High pretreatment serum concentration of basic fibroblast growth factor is a predictor of poor prognosis in small cell lung cancer. Cancer Epidemiol. Biomarkers Prev. 11, 1492–1495 (2002).

    PubMed  CAS  Google Scholar 

  81. Nguyen, M. et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl Cancer Inst. 86, 356–361 (1994).

    Article  PubMed  CAS  Google Scholar 

  82. Yan, G., Fukabori, Y., McBride, G., Nikolaropolous, S. & McKeehan, W. L. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol. Cell. Biol. 13, 4513–4522 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ranieri, D., Belleudi, F., Magenta, A. & Torrisi, M. R. HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition. Int. J. Cancer 137, 61–72 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Chaffer, C. L. et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66, 11271–11278 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. Ishiwata, T. et al. Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation. Am. J. Pathol. 180, 1928–1941 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Matsuda, Y., Hagio, M., Seya, T. & Ishiwata, T. Fibroblast growth factor receptor 2 IIIc as a therapeutic target for colorectal cancer cells. Mol. Cancer Ther. 11, 2010–2020 (2012).

    Article  PubMed  CAS  Google Scholar 

  87. Broadley, K. N. et al. Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab. Invest. 61, 571–575 (1989).

    PubMed  CAS  Google Scholar 

  88. Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M. & Basilico, C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl Acad. Sci. USA 95, 5672–5677 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M. & Christofori, G. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 60, 7163–7169 (2000).

    PubMed  CAS  Google Scholar 

  90. Ronca, R., Giacomini, A., Rusnati, M. & Presta, M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin. Ther. Targets 19, 1361–1377 (2015).

    Article  PubMed  CAS  Google Scholar 

  91. Pepper, M. S., Mandriota, S. J., Jeltsch, M., Kumar, V. & Alitalo, K. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J. Cell. Physiol. 177, 439–452 (1998).

    Article  PubMed  CAS  Google Scholar 

  92. Yan, W., Bentley, B. & Shao, R. Distinct angiogenic mediators are required for basic fibroblast growth factor- and vascular endothelial growth factor-induced angiogenesis: the role of cytoplasmic tyrosine kinase c-Abl in tumor angiogenesis. Mol. Biol. Cell 19, 2278–2288 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kopetz, S. et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 28, 453–459 (2010).

    Article  PubMed  CAS  Google Scholar 

  94. Allen, E., Walters, I. B. & Hanahan, D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin. Cancer Res. 17, 5299–5310 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang, K. et al. Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma. Cancer Res. 73, 1298–1307 (2013).

    Article  PubMed  CAS  Google Scholar 

  96. Luo, L. Y. et al. The tyrosine kinase adaptor protein FRS2 is oncogenic and amplified in high-grade serous ovarian cancer. Mol. Cancer Res. 13, 502–509 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Timsah, Z. et al. Competition between Grb2 and Plcgamma1 for FGFR2 regulates basal phospholipase activity and invasion. Nat. Struct. Mol. Biol. 21, 180–188 (2014).

    Article  PubMed  CAS  Google Scholar 

  98. Timsah, Z. et al. Grb2 depletion under non-stimulated conditions inhibits PTEN, promotes Akt-induced tumor formation and contributes to poor prognosis in ovarian cancer. Oncogene 35, 2186–2196 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Timsah, Z. et al. Expression pattern of FGFR2, Grb2 and Plcgamma1 acts as a novel prognostic marker of recurrence recurrence-free survival in lung adenocarcinoma. Am. J. Cancer Res. 5, 3135–3148 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Angevin, E. et al. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin. Cancer Res. 19, 1257–1268 (2013).

    Article  PubMed  CAS  Google Scholar 

  101. Motzer, R. J. et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol. 15, 286–296 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Soria, J. C. et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann. Oncol. 25, 2244–2251 (2014).

    Article  PubMed  Google Scholar 

  103. Okamoto, I. et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol. Cancer Ther. 9, 2825–2833 (2010).

    Article  PubMed  CAS  Google Scholar 

  104. Cortes, J. E. et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 369, 1783–1796 (2013).

    Article  PubMed  CAS  Google Scholar 

  105. Johnson, D. E. & Williams, L. T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    PubMed  CAS  Google Scholar 

  106. Lesca, E., Lammens, A., Huber, R. & Augustin, M. Structural analysis of the human fibroblast growth factor receptor 4 kinase. J. Mol. Biol. 426, 3744–3756 (2014).

    Article  PubMed  CAS  Google Scholar 

  107. Andre, F. et al. Results of a phase I study of AZD4547, an inhibitor of fibroblast growth factor receptor (FGFR), in patients with advanced solid tumors. Cancer Res. 73 (Suppl.), abstr. LB-145 (2013).

    Google Scholar 

  108. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1–3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol. 35, 157–165 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Bang, Y.-J. et al. A randomized, open-label phase II study of AZD4547 (AZD) versus paclitaxel (P) in previously treated patients with advanced gastric cancer (AGC) with fibroblast growth factor receptor 2 (FGFR2) polysomy or gene amplification (amp): SHINE study. J. Clin. Oncol. 33 (Suppl.), abstr. 4014 (2015).

    Article  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02150967 (2016).

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02257541 (2016).

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02160041 (2016).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365597 (2017).

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01212107 (2015).

  115. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01363024 (2016).

  116. ODonnell, P. et al. A phase I dose-escalation study of MFGR1877S, a human monoclonal anti-fibroblast growth factor receptor 3 (FGFR3) antibody, in patients (pts) with advanced solid tumors. Eur. J. Cancer 48, 191–192 (2012).

    Article  Google Scholar 

  117. Sun, H. D. et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am. J. Physiol. 292, E964–E976 (2007).

    Article  CAS  Google Scholar 

  118. Gemo, A. T. et al. FPA144: a therapeutic antibody for treating patients with gastric cancers bearing FGFR2 gene amplification. Cancer Res. 74 (Suppl.), abstr. 5446 (2014).

    Google Scholar 

  119. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02318329 (2017).

  120. Bendell, J. C. et al. FPA144-001: a first in human study of FPA 144, an ADCC-enhanced, FGFR2b isoform-selective monoclonal antibody in patients with advanced solid tumors. J. Clin. Oncol. 34 (Suppl. 4S), 140 (2016).

    Article  Google Scholar 

  121. Harding, T. C. et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci. Transl Med. 5, 178ra39 (2013).

    Article  PubMed  CAS  Google Scholar 

  122. Tolcher, A. W. et al. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann. Oncol. 27, 526–532 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Andre, F., Delaloge, S. & Soria, J. C. Biology-driven phase II trials: what is the optimal model for molecular selection? J. Clin. Oncol. 29, 1236–1238 (2011).

    Article  PubMed  Google Scholar 

  124. Malchers, F. et al. Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discov. 4, 246–257 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Wynes, M. W. et al. FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies. Clin. Cancer Res. 20, 3299–3309 (2014). This paper provides evidence that FGFR1 amplification neither always translates into FGFR1 protein overexpression nor acts as a biomarker of response to targeted FGFR therapy in patients with lung cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kotani, H. et al. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression. Oncogene 35, 3587–3597 (2015).

    Article  PubMed  CAS  Google Scholar 

  127. Kimelman, D. & Kirschner, M. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51, 869–877 (1987).

    Article  PubMed  CAS  Google Scholar 

  128. Brewer, J. R., Mazot, P. & Soriano, P. Genetic insights into the mechanisms of Fgf signaling. Genes Dev. 30, 751–771 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Corson, L. B., Yamanaka, Y., Lai, K. M. & Rossant, J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130, 4527–4537 (2003).

    Article  PubMed  CAS  Google Scholar 

  130. Shiang, C. Y. et al. Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Res. Treat. 123, 747–755 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Xian, W., Schwertfeger, K. L., Vargo-Gogola, T. & Rosen, J. M. Pleiotropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J. Cell Biol. 171, 663–673 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Welm, B. E. et al. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J. Cell Biol. 157, 703–714 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. French, D. M. et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE 7, e36713 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hagel, M. et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 5, 424–437 (2015).

    Article  PubMed  CAS  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02421185 (2017).

  136. Liao, R. G. et al. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 73, 5195–5205 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Gozgit, J. M. et al. Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemother. Pharmacol. 71, 1315–1323 (2013).

    Article  PubMed  CAS  Google Scholar 

  138. Scheller, T. et al. mTOR inhibition improves fibroblast growth factor receptor targeting in hepatocellular carcinoma. Br. J. Cancer 112, 841–850 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gavine, P. R. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72, 2045–2056 (2012).

    Article  PubMed  CAS  Google Scholar 

  140. Zhao, G. et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol. Cancer Ther. 10, 2200–2210 (2011).

    Article  PubMed  CAS  Google Scholar 

  141. Ronca, R. et al. Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell 28, 225–239 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Blencke, S. et al. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol. 11, 691–701 (2004).

    Article  PubMed  CAS  Google Scholar 

  143. Byron, S. A. et al. The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. Neoplasia 15, 975–988 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Chell, V. et al. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene 32, 3059–3070 (2013).

    Article  PubMed  CAS  Google Scholar 

  145. Goyal, L. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-16-1000 (2016).

  146. Tan, L. et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc. Natl Acad. Sci. USA 111, E4869–E4877 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wang, J. et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene 34, 2167–2177 (2015).

    Article  PubMed  CAS  Google Scholar 

  148. Herrera-Abreu, M. T. et al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discov. 3, 1058–1071 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hughes, S. E. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J. Histochem. Cytochem. 45, 1005–1019 (1997).

    Article  PubMed  CAS  Google Scholar 

  150. Zhang, X., Bao, L., Yang, L., Wu, Q. & Li, S. Roles of intracellular fibroblast growth factors in neural development and functions. Sci. China Life Sci. 55, 1038–1044 (2012).

    Article  PubMed  CAS  Google Scholar 

  151. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Fernandes-Freitas, I. & Owen, B. M. Metabolic roles of endocrine fibroblast growth factors. Curr. Opin. Pharmacol. 25, 30–35 (2015).

    Article  PubMed  CAS  Google Scholar 

  153. Degirolamo, C., Sabba, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15, 51–69 (2015).

    Article  PubMed  CAS  Google Scholar 

  154. Gotoh, N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci. 99, 1319–1325 (2008).

    Article  PubMed  CAS  Google Scholar 

  155. Fearon, A. E. & Grose, R. P. Grb-ing receptor activation by the tail. Nat. Struct. Mol. Biol. 21, 113–114 (2014).

    Article  PubMed  CAS  Google Scholar 

  156. Wong, A., Lamothe, B., Lee, A., Schlessinger, J. & Lax, I. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc. Natl Acad. Sci. USA 99, 6684–6689 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Fong, C. W. et al. Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J. Biol. Chem. 278, 33456–33464 (2003).

    Article  PubMed  CAS  Google Scholar 

  158. Sieglitz, F. et al. Antagonistic feedback loops involving Rau and Sprouty in the Drosophila eye control neuronal and glial differentiation. Sci. Signal. 6, ra96 (2013).

    Article  PubMed  CAS  Google Scholar 

  159. Formisano, L. et al. FGFR1 is associated with resistance to interaction with estrogen receptor (ER) α endocrine therapy in ER+/FGFR1-amplified breast cancer. Cancer Res. 75 (Suppl.), abstr. 2435 (2015).

    Google Scholar 

  160. Fernanda Amary, M. et al. Fibroblastic growth factor receptor 1 amplification in osteosarcoma is associated with poor response to neo-adjuvant chemotherapy. Cancer Med. 3, 980–987 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01202591 (2016).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01791985 (2015).

  163. Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Ware, K. E. et al. Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression. PLoS ONE 5, e14117 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Yadav, V. et al. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem. 287, 28087–28098 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kim, B. et al. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 34, 1083–1093 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    Article  PubMed  Google Scholar 

  168. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014). This study demonstrates the use of patient-derived models in cancer research, particularly in identifying genomic mechanisms of resistance and, consequently, putative drug combination strategies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Terai, H. et al. Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol. Cancer Res. 11, 759–767 (2013).

    Article  PubMed  CAS  Google Scholar 

  171. Ware, K. E. et al. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis 2, e39 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Azuma, K. et al. FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget 5, 5908–5919 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Pietras, K., Pahler, J., Bergers, G. & Hanahan, D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 5, e19 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Javidi-Sharifi, N. et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 75, 880–891 (2015).

    Article  PubMed  CAS  Google Scholar 

  175. Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34, 57–65 (2013).

    Article  PubMed  CAS  Google Scholar 

  177. Trudel, S. et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105, 2941–2948 (2005).

    Article  PubMed  CAS  Google Scholar 

  178. O'Hare, T. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401–412 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Bello, E. et al. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 71, 1396–1405 (2011).

    Article  PubMed  CAS  Google Scholar 

  180. Guagnano, V. et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem. 54, 7066–7083 (2011).

    Article  PubMed  CAS  Google Scholar 

  181. Angibaud, P. R. et al. Discovery of JNJ-42756493, a potent fibroblast growth factor receptor (FGFR) inhibitor using a fragment based approach. Cancer Res. 74 (Suppl.), abstr. 4748 (2014).

    Google Scholar 

  182. Ochiiwa, H. et al. TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol. Cancer Ther. 12 (11 Suppl.), abstr. A270 (2013).

    Google Scholar 

  183. Nakanishi, Y. et al. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther. 13, 2547–2558 (2014).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge UK National Health Service funding to the UK National Institute for Health Research biomedical research centre at the Royal Marsden Hospital and the Institute of Cancer Research (London, UK). The authors would also like to thank U. Asghar (Institute of Cancer Research) for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Turner.

Ethics declarations

Competing interests

N.C.T. has received advisory board honoraria from AstraZeneca, Novartis and Servier. I.S.B. declares no competing interests.

PowerPoint slides

Glossary

Hormone receptor-positive

A type of breast cancer that expresses the oestrogen and progesterone receptors.

Triple-negative breast cancers

A molecular subtype of breast cancer that lacks expression of the oestrogen and progesterone receptors together with human epidermal growth factor receptor 2 (HER2).

Diffuse subtype

A subtype of stomach cancer that is poorly cohesive and infiltrates diffusely; sometimes referred to as 'signet ring cell gastric cancer' because of its characteristic appearance.

Amplicon

A particular sequence or region of DNA or RNA that is susceptible to amplification.

Prohibitin

A family of highly conserved proteins with the characteristic PHB domain that facilitates their predominant localization to mitochondrial and cell membranes, often in lipid rafts.

RECIST partial response

As per the set of rules outlining response evaluation criteria in solid tumours (RECIST), 'partial response' is a decrease in the sum of diameters of target lesions by at least 30%, where the baseline sum of diameters is the reference.

Gene to centromere ratio

A numerical ratio of the copies of a target gene relative to the centromere on chromosome 17, determined by fluorescence in situ hybridization, where values of > 2 suggest target gene amplification.

Hyperphosphataemia

An abnormal elevation of phosphate levels in the blood.

Keratopathy

A condition that is characterized by the appearance of grey bands on the cornea, which are caused by deposits of calcium as a result of increased calcium levels in the blood.

Retinal pigment epithelial detachment

A condition that is characterized by detachment of the retinal pigment epithelium from the connective tissue beneath.

Gatekeeper mutations

Non-synonymous mutations that modulate accessibility of the drug to the ATP-binding domain on a kinase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babina, I., Turner, N. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 17, 318–332 (2017). https://doi.org/10.1038/nrc.2017.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.8

  • Springer Nature Limited

This article is cited by

Navigation