Skip to main content
Log in

Catalytic living ring-opening metathesis polymerization

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

A Retraction to this article was published on 11 April 2018

This article has been updated

Abstract

In living ring-opening metathesis polymerization (ROMP), a transition-metal–carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Illustration of catalytic living ROMP.
Figure 2: Possible reactions of CTA1 with the G3 benzylidene complex.
Figure 3: The mechanism of the process of degenerative chain-transfer metathesis.
Figure 4: Plot of the molecular weight obtained versus the monomer/CTA ratio.

Similar content being viewed by others

Change history

  • 11 April 2018

    We the authors are retracting this Article because of our failure to reproduce the molecular weight dispersities (PDI) shown in Fig. 4 using the chain-transfer agent described in the paper (CTA1). While the degenerate chain-transfer mechanism described in Fig. 3 is correct, the best molecular weight dispersities that could be reproduced with the chain-transfer agent shown in the Article are much larger (PDI > 2.0) than reported. We have since studied the kinetics of CTA1 in comparison with several other chain-transfer agents we are currently investigating and we now understand that the reactivity of CTA1 towards propagating ruthenium alkylidene complexes is very low. Very long monomer addition times would therefore have been necessary to gain control over the molecular weight distribution. Such long addition times would exceed the lifetime of the Grubbs catalyst in solution. Faster addition of the monomer has since repeatedly been shown to broaden the molecular weight dispersity. Additionally, the best chain-transfer agents we are currently investigating are orders of magnitude more reactive than CTA1 but give broader molecular weight dispersities than reported in Fig. 4. Molecular weight and dispersity control as shown in Fig. 4 is therefore an inappropriate claim for CTA1. The authors deeply regret these errors and apologize to the community.

References

  1. Calderon, N. Olefin metathesis reaction. Acc. Chem. Res. 5, 127–132 (1972).

    Article  CAS  Google Scholar 

  2. Calderon, N., Ofsted, E. A. & Judy, W. A. Mechanistic aspects of olefin metathesis. Angew. Chem. Int. Ed. Engl. 15, 401–409 (1976).

    Article  Google Scholar 

  3. Ivin, K. J. & Mol, J. C. Olefin Metathesis and Metathesis (Academic Press, 1997).

    Google Scholar 

  4. Herisson, P. J.-L. & Yves Chauvin, Y. Catalyse de transformation des olefines par les complexes du tungstene. II. Telomerisation des olefines cycliques en presence d'lefines acycliques. Makromol. Chem. 141, 161–176 (1970).

    Article  Google Scholar 

  5. Nguyen, S. T. & Trnka, T. M. in Handbook of Metathesis 1st edn, Vol. 1 (ed. Grubbs, R. H.) Ch. 1.6, 61–85 (Wiley-VCH, 2003).

    Book  Google Scholar 

  6. Schrock, R. R. in Handbook of Metathesis 2nd edn, Vol. 1 (eds Grubbs, R. H. & Wenzel, A. G.) Ch. 1, 1–27 (Wiley-VCH, 2015).

    Google Scholar 

  7. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    Article  CAS  Google Scholar 

  8. Lindmark-Hamberg, M. & Wagener, K. B. Acyclic metathesis polymerization. The olefin metathesis reaction of 1,5-hexadiene and 1,9-decadiene. Macromolecules 20, 2949–2951 (1987).

    Article  CAS  Google Scholar 

  9. Lehman, S. E. & Wagener, K. B. in Handbook of Metathesis: Catalyst Development (ed. Grubbs, R. H.) Ch. 3.9, 283–353 (Wiley-VCH, 2003).

    Book  Google Scholar 

  10. Baughman, T. W. & Wagener, K. B. in Advances in Polymer Science (ed. Buchmeiser, M.) Vol. 176, 1–42 (Springer, 2005).

    Google Scholar 

  11. Bielawski, C. W., Benitez, D., Morita, T. & Grubbs, R. H. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization. Macromolecules 34, 8610–8618 (2001).

    Article  CAS  Google Scholar 

  12. Chiefari, J. et al. Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

    Article  CAS  Google Scholar 

  13. Ajellal, N. et al. Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans. 39, 8363–8376 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Keaton, R. J. & Sita, L. R. Degenerative transfer living Ziegler–Natta polymerization: application to the synthesis of monomodal stereoblock polyolefins of narrow polydispersity and tunable block length. J. Am. Chem. Soc. 125, 9062–9069 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kempe, R. How to polymerize ethylene in a highly controlled fashion? Chem. Eur. J. 13, 2764–2773 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 54, 1924–1928 (2015).

    Article  CAS  Google Scholar 

  17. Committee for Medicinal Products for Human Use. Guidelines for the Specification Limits for Residues of Metal Catalysts or Metal Reagents (European Medicines Agency, 2008).

  18. Clavier, H., Grela, K., Kirschning, A., Mauduit, M. & Nolan, S. P. Sustainable concepts in olefin metathesis. Angew. Chem. Int. Ed. 46, 6786–6801 (2007).

    Article  CAS  Google Scholar 

  19. Sommer, W. J. & Weck, M. Supported N-heterocyclic carbene complexes in catalysis. Coord. Chem. Rev. 251, 860–873 (2007).

    Article  CAS  Google Scholar 

  20. Buchmeiser, M. R. Polymer-supported well-defined metathesis catalysts. Chem. Rev. 109, 303–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Cho, J. H. & Kim, B. M. An efficient method for removal of ruthenium byproducts from olefin metathesis reactions. Org. Lett. 5, 531–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H., Goodman, S. N., Dai, Q., Stockdale, G. W. & Clark, W. M. Development of a robust ring-closing metathesis reaction in the synthesis of SB-462795, a cathepsin K inhibitor. Org. Process Res. Dev. 12, 226–234 (2008).

    Article  CAS  Google Scholar 

  23. Maynard, H. D. & Grubbs, R. H. Purification technique for the removal of ruthenium from olefin metathesis reaction products. Tetrahedron Lett. 40, 4137–4140 (1999).

    Article  CAS  Google Scholar 

  24. Ahn, Y. M., Yang, K. L. & Georg, G. I. A convenient method for the efficient removal of ruthenium byproducts generated during olefin metathesis reactions. Org. Lett. 3, 1411–1413 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Paquette, L. A. et al. A convenient method for removing all highly-colored byproducts generated during olefin metathesis reactions. Org. Lett. 2, 1259–1261 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Mendez-Andino, J. & Paquette, L. A. Tandem deployment of indium-, ruthenium-, and lead-promoted reactions. Four-carbon intercalation between the carbonyl groups of open-chain and cyclicalpha-diketones. Org. Lett. 2, 1263–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Knight, D. W., Morgan, I. R. & Proctor, A. J. A simple oxidative procedure for the removal of ruthenium residues from metathesis reaction products. Tetrahedron Lett. 51, 638–640 (2010).

    Article  CAS  Google Scholar 

  28. Liu, W., Nichols, P. J. & Smith, N. Di(ethylene glycol) vinyl ether: a highly efficient deactivating reagent for olefin metathesis catalysts. Tetrahedron Lett. 50, 6103–6105 (2009).

    Article  CAS  Google Scholar 

  29. Loeber, A. et al. Monolithic polymers for cell cultivation, differentiation, and tissue engineering. Angew. Chem. Int. Ed. 47, 9138–9141 (2008).

    Article  CAS  Google Scholar 

  30. Yee, N. K. et al. Efficient large-scale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. J. Org. Chem. 71, 7133–7145 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Farina, V. et al. Second-generation process for the HCV protease inhibitor BILN 2061: a greener approach to Ru-catalyzed ring-closing metathesis. Org. Process Res. Dev. 13, 250–254 (2009).

    Article  CAS  Google Scholar 

  32. Wang, H. et al. Large-scale synthesis of SB-462795, a cathepsin K inhibitor: the RCM-based approaches. Tetrahedron 65, 6291–6303 (2009).

    Article  CAS  Google Scholar 

  33. Galan, B. R., Kalbarczyk, K. P., Szczepankiewicz, S., Keister, J. B. & Diver, S. T. A rapid and simple cleanup procedure for metathesis reactions. Org. Lett. 9, 1203–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Pugh, C. & Schrock, R. R. Synthesis of side-chain liquid crystal polymers by living ring-opening metathesis polymerization. 3. Influence of molecular weight, interconnecting unit, and substituent on the mesomorphic behavior of polymers with laterally attached mesogens. Macromolecules 25, 6593–6604 (1992).

    Article  CAS  Google Scholar 

  35. Percec, V. & Schlueter, D. Mechanistic investigations on the formation of supramolecular cylindrical shaped oligomers and polymers by living ring opening metathesis polymerization of a 7-oxanorbornene monomer substituted with two tapered monodendrons. Macromolecules 30, 5783–5790 (1997).

    Article  CAS  Google Scholar 

  36. Demel, S. et al. Ruthenium-initiated ROMP of nitrile monomers. Inorg. Chim. Acta 345, 363–366 (2003).

    Article  CAS  Google Scholar 

  37. Mayr, B., Tessadri, R., Post, E. & Buchmeiser, M. R. Metathesis-based monoliths: influence of polymerization conditions on the separation of biomolecules. Anal. Chem. 73, 4071–4078 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Mayr, M. et al. Monolithic disk-supported metathesis catalysts for use in combinatorial chemistry. Adv. Synth. Catal. 347, 484–492 (2005).

    Article  CAS  Google Scholar 

  39. Abraham, S., Ha, C.-S. & Kim, I. Self-assembly of star-shaped polystyrene-block-polypeptide copolymers synthesized by the combination of atom transfer radical polymerization and ring-opening living polymerization of α-amino acid-N-carboxyanhydrides. J. Polym. Sci. A 44, 2774–2783 (2006).

    Article  CAS  Google Scholar 

  40. Chemtob, A., Héroguez, V. & Gnanou, Y. Dispersion ring-opening metathesis polymerization of norbornene using PEO-based stabilizers. Macromolecules 35, 9262–9269 (2002).

    Article  CAS  Google Scholar 

  41. Kovacic, S., Krajnc, P. & Slugovc, C. Inherently reactive polyHIPE material from dicyclopentadiene. Chem. Commun. 46, 7504–7506 (2010).

    Article  CAS  Google Scholar 

  42. Kreutzwiesner, E. et al. Contact bactericides and fungicides on the basis of amino-functionalized poly(norbornene)s. J. Polym. Sci. Part A 48, 4504–4514 (2010).

    Article  CAS  Google Scholar 

  43. Kovacic, S., Kren, H., Krajnc, P., Koller, S. & Slugovc, C. The use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as separator in lithium-ion batteries. Macromol. Rapid Commun. 34, 581–587 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Zha, Y., Disabb-Miller, M. L., Johnson, Z. D., Hickner, M. A. & Tew, G. N. Metal-cation-based anion exchange membranes. J. Am. Chem. Soc. 134, 4493–4496 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, Y. A., Chalker, J. M. & Davis, B. G. Olefin metathesis for site-selective protein modification. ChemBioChem. 10, 959–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Gordon, E. J., Sanders, W. J. & Kiessling, L. L. Synthetic ligands point to cell surface strategies. Nature 392, 30–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Manning, D. D., Hu, X., Beck, P. & Kiessling, L. L. Synthesis of sulfated neoglycopolymers: selective P-selectin inhibitors. J. Am. Chem. Soc. 119, 3161–3162 (1997).

    Article  CAS  Google Scholar 

  48. Mortell, K. H., Weatherman, R. V. & Kiessling, L. L. Recognition specificity of neoglycopolymers prepared by ring-opening metathesis polymerization. J. Am. Chem. Soc. 118, 2297–2298 (1996).

    Article  CAS  Google Scholar 

  49. Mortell, K. H., Gingras, M. & Kiessling, L. L. Synthesis of cell agglutination inhibitors by aqueous ring-opening metathesis polymerization. J. Am. Chem. Soc. 116, 12053–12054 (1994).

    Article  CAS  Google Scholar 

  50. Maynard, H. D., Okada, S. Y. & Grubbs, R. H. Synthesis of norbornenyl polymers with bioactive oligopeptides by ring-opening metathesis polymerization. Macromolecules 33, 6239–6248 (2000).

    Article  CAS  Google Scholar 

  51. Sveinbjörnsson, B. R. et al. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl Acad. Sci. USA 109, 14332–14336 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Keitz, B. K., Fedorov, A. & Grubbs, R. H. cis-Selective ring-opening metathesis polymerization with ruthenium catalysts. J. Am. Chem. Soc. 134, 2040–2043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schrock, R. R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. Acc. Chem. Res. 47, 2457–2466 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Hilf, S. & Kilbinger, A. F. M. Functional end groups for polymers prepared using the ring-opening metathesis polymerisation. Nature Chem. 1, 537–546 (2009).

    Article  CAS  Google Scholar 

  55. Nagarkar, A. A., Aurelien, C., Fromm, K. & Kilbinger, A. F. M. Efficient amine end-functionalization of living ring-opening metathesis polymers. Macromolecules 45, 4447–4453 (2012).

    Article  CAS  Google Scholar 

  56. Nagarkar, A. A. & Kilbinger, A. F. M. End functional ROMP polymers via degradation of a ruthenium Fischer type carbene. Chem. Sci. 5, 4687–4692 (2014).

    Article  CAS  Google Scholar 

  57. Hanik, N. & Kilbinger, A. F. M. Narrowly distributed homotelechelic polymers in 30 minutes: using fast in-situ pre-functionalized ROMP initiators. J. Polym. Sci. A 51, 4183–4190 (2013).

    Article  CAS  Google Scholar 

  58. Matson, J. B., Virgil, S. C. & Grubbs, R. H. Pulsed-addition ring-opening metathesis polymerization: catalyst-economical syntheses of homopolymers and block copolymers. J. Am. Chem. Soc. 131, 3355–3362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, H. & Choi, T. L. Fast tandem ring-opening/ring-closing metathesis polymerization from a monomer containing cyclohexene and terminal alkyne. J. Am. Chem. Soc. 134, 7270–7273 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Park, H., Lee, H. K. & Choi, T. L. Tandem ring-opening/ring-closing metathesis polymerization: relationship between monomer structure and reactivity. J. Am. Chem. Soc. 135, 10769–10775 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Kang, E. H., Lee, I. S. & Choi, T. L. Ultrafast cyclopolymerization for polyene synthesis: living polymerization to dendronized polymers. J. Am. Chem. Soc. 133, 11904–11907 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Song, A., Parker, K. A. & Sampson, N. S. Synthesis of copolymers by alternating ROMP (AROMP). J. Am. Chem. Soc. 131, 3444–3445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan, L., Parker, K. A. & Sampson, N. S. A bicyclo[4.2.0]octene-derived monomer provides completely linear alternating copolymers via alternating ring-opening metathesis polymerization (AROMP). Macromolecules 47, 6572–6579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Swiss National Science Foundation for funding.

Author information

Authors and Affiliations

Authors

Contributions

A.A.N. and A.F.M.K. designed the experiments. A.A.N. performed the experiments. A.A.N. and A.F.M.K. wrote the main manuscript. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Andreas F. M. Kilbinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarkar, A., Kilbinger, A. Catalytic living ring-opening metathesis polymerization. Nature Chem 7, 718–723 (2015). https://doi.org/10.1038/nchem.2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2320

  • Springer Nature Limited

This article is cited by

Navigation