Skip to main content
Log in

The hemodynamic patterns in hypertensive men and women of different age

  • Original Article
  • Published:
Journal of Human Hypertension Submit manuscript

Abstract

Aging is associated with cardiovascular remodeling, which can be accelerated in arterial hypertension (AH). The aim of this study was to evaluate the relation between hemodynamic profile and age, as well as to identify the role of sex in hemodynamic patterns of aging in AH. The study comprised 326 patients with AH (mean age: 44.3 years). Two-dimensional echocardiography was performed to evaluate, that is, left ventricular diastolic dysfunction (LVDD) and ejection fraction (LVEF), and ICG to evaluate, that is, acceleration time index (ACI), velocity index (VI), total arterial compliance (TAC), systemic vascular resistance index (SVRI) and thoracic fluid content (TFC). The statistical analysis included interquartile comparison in subgroups of age <19–37 years (Q1), 38–44 years (Q2), 45–51 years (Q3) and 52–68 years (Q4). Aging was associated with: (1) higher prevalence of LVDD (Q1 vs Q4: 11.0% vs 24.7%, P=0.023); (2) altered LV systolic performance—ACI (81.4 vs 64.0 1/100 Ω s−2, P=0.0001), VI (50.5 vs 42.8 1/1000 Ω s−1, P=0.006), LVEF (65.4% vs 67.0%, NS); and (3) increased afterload—TAC (2.25 vs 1.87 ml mm Hg−1, P=0.0001), SVRI (2182 vs 2407 dyn s m2 cm5; P=0.045). The ‘U-shaped’ relation to age was observed for TFC. The above-mentioned hemodynamic trends were more pronounced in men, whereas females presented the ‘middle-aged delay’. The influence of aging on cardiovascular system shows in progressive arterial stiffness and impaired left ventricular function. Thoracic fluid reduction may be compensatory to vasoconstriction but its efficiency declines with age. The patterns of cardiovascular aging are different in men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB,, Cockcroft JR, and ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 2005; 46: 1753–1760.

    Article  Google Scholar 

  2. Strait JB, Lakatta EG . Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 2012; 8: 143–164.

    Article  Google Scholar 

  3. Ferrari AU, Radaelli A, Centola M . Invited review: aging and the cardiovascular system. J Appl Physiol (1985) 2003; 95: 2591–2597.

    Article  Google Scholar 

  4. Maruyama Y . Aging and arterial-cardiac interactions in the elderly. Int J Cardiol 2012; 155: 14–19.

    Article  Google Scholar 

  5. Steppan J, Barodka V, Berkowitz DE, Nyhan D . Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol Res Pract 2011; 2011: 263585.

    Article  Google Scholar 

  6. Pepe S, Lakatta EG . Aging hearts and vessels: masters of adaptation and survival. Cardiovasc Res 2005; 66: 190–193.

    Article  CAS  Google Scholar 

  7. Oxenham H, Sharpe N . Cardiovascular aging and heart failure. Eur J Heart Fail 2003; 5: 427–434.

    Article  Google Scholar 

  8. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK . Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005; 45: 522–525.

    Article  CAS  Google Scholar 

  9. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ . Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension 2009; 53: 571–576.

    Article  CAS  Google Scholar 

  10. Krzesiński P, Gielerak GG, Kowal JJ . A ‘patient-tailored’ treatment of hypertension with use of impedance cardiography: a randomized, prospective and controlled trial. Med Sci Monit 2013; 19: 242–250.

    Article  Google Scholar 

  11. Smith RD, Levy P, Ferrario CM . Consideration of Noninvasive Hemodynamic Monitoring to Target Reduction of Blood Pressure Levels Study Group: value of noninvasive hemodynamics to achieve blood pressure control in hypertensive subjects (The CONTROL Trial). Hypertension 2006; 47: 769–775.

    Article  Google Scholar 

  12. Taler SJ . Individualizing antihypertensive combination therapies: clinical and hemodynamic considerations. Curr Hypertens Rep 2014; 16: 451.

    Article  Google Scholar 

  13. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31: 1281–1357.

    Article  CAS  Google Scholar 

  14. Alberti KG, Zimmet P, Shaw J and IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet 2005; 366: 1059–1062.

    Article  Google Scholar 

  15. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 2009; 10: 165–193.

    Article  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. American Society of Echocardiography's Nomenclature and Standards Committee, Task Force on Chamber Quantification, American College of Cardiology Echocardiography Committee, American Heart Association, European Association of Echocardiography, European Society of Cardiology Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7: 79–108.

    Article  Google Scholar 

  17. Lund-Johansen P . The hemodynamics of the aging cardiovascular system. Cardiovasc Pharmacol 1988; 12: S20–S32.

    Article  Google Scholar 

  18. Galarza CR, Alfie J, Waisman GD, Mayorga LM, Cámera LA, del Río M et al. Diastolic pressure underestimates age-related hemodynamic impairment. Hypertension 1997; 30: 809–816.

    Article  CAS  Google Scholar 

  19. Abdelhammed AI, Smith RD, Levy P, Smits GJ, Ferrario CM . Noninvasive hemodynamic profiles in hypertensive subjects. Am J Hypertens 2005; 18: 51S–59S.

    Article  Google Scholar 

  20. Karavidas A, Lazaros G, Tsiachris D, Pyrgakis V . Aging and the cardiovascular system. Hellenic J Cardiol 2010; 51: 421–427.

    PubMed  Google Scholar 

  21. Xiajuan Z, Ding D, Yanyan H, Zhen H . Impedance cardiographic hemodynamic variables and hypertension in elderly Han residents. Ups J Med Sci 2013; 118: 80–86.

    Article  Google Scholar 

  22. Susic D, Varagic J, Frohlich ED . Coronary circulation in hypertension and aging: an experimental study. Ochsner J 2008; 8: 5–10.

    PubMed  PubMed Central  Google Scholar 

  23. Krzesiński P, Stańczyk A, Gielerak G, Uziębło-Życzkowska B, Kurpaska M, Piotrowicz K et al. Sex determines cardiovascular hemodynamics in hypertension. J Hum Hypertens 2015; e-pub ahead of print 29 January 2015.

  24. Baylis C . Changes in renal hemodynamics and structure in the aging kidney; sexual dimorphism and the nitric oxide system. Exp Gerontol 2005; 40: 271–278.

    Article  CAS  Google Scholar 

  25. Grodzicki T, Michalewicz L, Messerli FH . Aging and essential hypertension: effect of left ventricular hypertrophy on cardiac function. Am J Hypertens 1998; 11: 425–429.

    Article  CAS  Google Scholar 

  26. Kallaras K, Sparks EA, Schuster DP, Osei K, Wooley CF, Boudoulas H . Cardiovascular effects of aging. Interrelationships of aortic, left ventricular, and left atrial function. Herz 2001; 26: 129–139.

    Article  CAS  Google Scholar 

  27. Katori R . Normal cardiac output in relation to age and body size. Tohoku J Exp Med 1979; 128: 377–387.

    Article  CAS  Google Scholar 

  28. Fagard R, Staessen J . Relation of cardiac output at rest and during exercise to age in essential hypertension. Am J Cardiol 1991; 67: 585–589.

    Article  CAS  Google Scholar 

  29. Woltjer HH, Bogaard HJ, Bronzwaer JG, de Cock CC, de Vries PM . Prediction of pulmonary capillary wedge pressure and assessment of stroke volume by noninvasive impedance cardiography. Am Heart J 1997; 134: 450–455.

    Article  CAS  Google Scholar 

  30. Pickett BR, Buell JC . Usefulness of the impedance cardiogram to reflect left ventricular diastolic function. Am J Cardiol 1993; 71: 1099–1103.

    Article  CAS  Google Scholar 

  31. Ebert TJ, Smith JJ, Barney JA, Merrill DC, Smith GK . The use of thoracic impedance for determining thoracic blood volume changes in man. Aviat Space Environ Med 1986; 57: 49–53.

    CAS  PubMed  Google Scholar 

  32. Malfatto G, Blengino S, Perego GB, Branzi G, Villani A, Facchini M et al. Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure. Congest Heart Fail 2012; 18: 25–31.

    Article  CAS  Google Scholar 

  33. Parrish MR, Laye MR, Wood T, Keiser SD, Owens MY, May WL et al. Impedance Cardiography Facilitates Differentiation of Severe and Superimposed Preeclampsia from Other Hypertensive Disorders. Hypertens Pregnancy 2012; 31: 327–340.

    Article  Google Scholar 

  34. Parmar CV, Prajapati DL, Chavda VV, Gokhale PA, Mehta HB, Shah CJ . A study of cardiac parameters using impedance plethysmography (IPG) in healthy volunteers. J Phys Pharm Adv 2012; 2: 365–379.

    Google Scholar 

  35. Boyd AC, Eshoo S, Richards DA, Thomas L . Hypertension accelerates the 'normal' aging process with a premature increase in left atrial volume. J Am Soc Hypertens 2013; 7: 149–156.

    Article  Google Scholar 

  36. Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM . Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 2009; 119: 2663–2670.

    Article  Google Scholar 

  37. Ghali JK, Liao Y, Cooper RS, Cao G . Changes in pulmonary hemodynamics with aging in a predominantly hypertensive population. Am J Cardiol 1992; 70: 367–370.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the medical staff of the Department of Cardiology and Internal Diseases of Military Institute of Medicine, especially Professor Andrzej Skrobowski for assistance in patient care and organizational supervision, and Dr Beata Uziębło-Życzkowska for assistance in patient care, performing echocardiography and data collection, and Drs Robert Wierzbowski, Jarosław Kowal, Małgorzata Kurpaska, Katarzyna Hałas, Magdalena Potapowicz-Krysztofiak, Agnieszka Jaguś-Jamioła, Łukasz Michalczyk, Agnieszka Wójcik, Anna Kazimierczak, Agnieszka Jurek, Kalina Wolszczak, Agata Galas, for the assistance in patient care and data collection, and Małgorzata Banak for the assistance in ICG measurements, and Lidia Wojda and Lidia Latosek for the nursing care and data collection. The study was partly supported by Ministry of Science and Higher Education/Military Institute of Medicine, Warsaw, Poland (Grant No. 148/WIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Krzesiński.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzesiński, P., Stańczyk, A., Gielerak, G. et al. The hemodynamic patterns in hypertensive men and women of different age. J Hum Hypertens 30, 177–185 (2016). https://doi.org/10.1038/jhh.2015.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2015.63

  • Springer Nature Limited

This article is cited by

Navigation