Skip to main content

Advertisement

Log in

Human skin permeation of emerging mycotoxins (beauvericin and enniatins)

  • Original Article
  • Published:
Journal of Exposure Science & Environmental Epidemiology Submit manuscript

Abstract

Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10−6 cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10−6 cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm2 h) for intact skin and from 0.07 to 1.11 μg/(cm2 h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE’s for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE’s up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gäumann E, Naef-Roth S, Etlinger L, Plattner PA, Nager U . Enniatin, ein neues gegen mykobakterien wirksames antibiotikum. Experimentia 1947; 3: 202–203.

    Article  Google Scholar 

  2. Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG . A novel compound enniatin G from the mangrove fungus Halosarpheia sp (strain 732) from the south China sea. Aust J Chem 2002; 55: 225–227.

    Article  CAS  Google Scholar 

  3. McKee TC, Bokesch HR, McCormick JL, Rashid MA, Spielvogel D, Gustafson KR et al. Isolation and characterization of newanti-HIV and cytotoxic leads from plants, marine and microbial origins. J Nat Prod 1997; 60: 431–438.

    Article  CAS  PubMed  Google Scholar 

  4. Nilanonta C, Isaka M, Chanphen R, Thong-Orn N, Tanticharoen M, Thebtaranonth Y . Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 2003; 59: 1015–1020.

    Article  CAS  Google Scholar 

  5. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y . Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 2004; 57: 732–738.

    Article  CAS  Google Scholar 

  6. Hamill RL, Higgens CE, Boaz HE, Gorman M . The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 1969; 49: 4255–4258.

    Article  CAS  Google Scholar 

  7. Wang Q, Xu L . Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 2012; 17: 2367–2377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andjelic CD, Planelles V, Barrows LR . Characterizing the anti-HIV activity of papuamide A. Mar Drugs 2008; 6: 528–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lemmens-Gruber R, Kamyar MR, Dornetshuber R . Cyclodepsipeptides—potential drugs and lead compounds in the drug development process. Curr Med Chem 2009; 16: 1122–1137.

    Article  CAS  PubMed  Google Scholar 

  10. VanderMolen KM, McCulloh W, Pearce CJ, Oberlies NH . Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot 2011; 64: 525–531.

    Article  CAS  Google Scholar 

  11. Dornetshuber R, Heffeter P, Kamyar MR, Peterbauer T, Berger W, Lemmens-Gruber R . Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem Res Toxicol 2007; 20: 465–473.

    Article  CAS  PubMed  Google Scholar 

  12. Jestoi M . Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit Rev Food Sci Nutr 2008; 48: 21–49.

    Article  CAS  PubMed  Google Scholar 

  13. Tomoda H, Nishida H, Huang XH, Masuma R, Kim YK, Omura S . New cyclodepsipeptides, enniatin-D, enniatin-E and enniatin-F produced by Fusarium sp FO-1305. J Antibiot 1992; 45: 1207–1215.

    Article  CAS  Google Scholar 

  14. Celik M, Aksoy H, Yilmaz S . Evaluation of beauvericin genotoxicity with the chromosomal aberrations, sister-chromatid exchanges and micronucleus assays. Ecotox Environ Safety 2010; 73: 1553–1557.

    Article  CAS  Google Scholar 

  15. Ivanova L, Skjerve E, Eriksen GS, Uhlig S . Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 2006; 47: 868–876.

    Article  CAS  PubMed  Google Scholar 

  16. Lee HS, Song HH, Jeong JH, Shin CG, Choi SU, Lee C . Cytotoxicities of enniatins H, I, and MK1688 from Fusarium oxysporum KFCC11363P. Toxicon 2008; 51: 1178–1185.

    Article  CAS  PubMed  Google Scholar 

  17. Macchia L, Di Paola R, Fornelli F, Nenna S, Moretti A, Napoletano R et al. Cytotoxicity of beauvericin to mammalian cells. In Abstracts of the International Seminar on Fusarium. Martina Franca: Italy. 1995, 72–73.

    Google Scholar 

  18. Meca G, Font G, Ruiz MJ . Comparative cytotoxicity study of enniatins A, A(1), A(2), B, B-1, B-4 and J(3) on Caco-2 cells, Hep-G(2) and HT-29. Food Chem Toxicol 2011; 49: 2464–2469.

    Article  CAS  PubMed  Google Scholar 

  19. Nilanonta C, Isaka M, Kittakoop P, Trakulnaleamsai S, Tanticharoen M, Thebtaranonth Y . Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Tetrahedron 2002; 58: 3355–3360.

    Article  CAS  Google Scholar 

  20. Prosperini A, Meca G, Font G, Ruiz MJ . Study of the cytotoxic activity of beauvericin and fusaproliferin and bioavailability in vitro on Caco-2 cells. Food Chem Toxicol 2012; 50: 2356–2361.

    Article  CAS  PubMed  Google Scholar 

  21. Watjen W, Debbab A, Hohfeld A, Chovolou Y, Kampkotter A, Edrada RA et al. Enniatins A1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol Nutr Food Res 2009; 53: 431–440.

    Article  CAS  PubMed  Google Scholar 

  22. Zahn JX, Burns AM, Liu MPX, Faeth SH, Gunatilaka AAL . Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents. J Nat Prod 2007; 70: 227–232.

    Article  CAS  Google Scholar 

  23. Klaric MS, Darabos D, Rozgaj R, Kasuba V, Pepeljnjak S . Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: single and combined genotoxic action. Arch Toxicol 2010; 84: 641–650.

    Article  CAS  PubMed  Google Scholar 

  24. Fotso J, Smith JS . Evaluation of beauvericin toxicity with the bacterial bioluminescence assay an the Ames mutagenicity bioassay. J Food Sci 2003; 68: 1938–1941.

    Article  CAS  Google Scholar 

  25. Behm C, Degen GH, Follmann W . The fusarium toxin enniatin B exerts no genotoxic activity, but pronounced cytotoxicity in vitro. Mol Nutr Food Res 2009; 53: 423–430.

    Article  CAS  PubMed  Google Scholar 

  26. Tonshin AA, Teplova VV, Andersson MA, Salkinoja-Salonen MS . The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology 2010; 276: 49–57.

    Article  CAS  PubMed  Google Scholar 

  27. Jestoi M, Rokka M, Jarvenpaa E, Peltonen K . Determination of Fusarium mycotoxins beauvericin and enniatins (A, A1, B, B1) in eggs of laying hens using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Chem 2009; 115: 1120–1127.

    Article  CAS  Google Scholar 

  28. Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J . Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agr Food Chem 2011; 59: 12990–12997.

    Article  CAS  Google Scholar 

  29. Santini A, Meca G, Uhlig S, Ritieni A . Fusaproliferin, beauvericin and enniatins: occurrence in food—a review. World Mycotoxin J 2012; 5: 71–81.

    Article  CAS  Google Scholar 

  30. Sebastia N, Meca G, Soriano JM, Manes J . Presence of Fusarium emerging mycotoxins in tiger-nuts commercialized in Spain. Food Control 2012; 25: 631–635.

    Article  CAS  Google Scholar 

  31. Serrano AB, Font G, Ruiz MJ, Ferrer E . Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem 2012; 135: 423–429.

    Article  CAS  PubMed  Google Scholar 

  32. Tolosa J, Font G, Manes F, Ferrer E . Nuts and dried fruits: natural occurrence of emerging Fusarium mycotoxins. Food Control 2013; 33: 215–220.

    Article  CAS  Google Scholar 

  33. Boonen J, Malysheva SV, Taevernier L, Di Mavungu JD, De Saeger S, De Spiegeleer B . Human skin penetration of selected model mycotoxins. Toxicology 2012; 301: 21–32.

    Article  CAS  PubMed  Google Scholar 

  34. Hintikka EL, Holopainen R, Asola A, Jestoi M, Peitzsch M, Kalso S et al. Mycotoxins in the ventilation systems of four schools in Finland. World Mycotoxin J 2009; 2: 369–379.

    Article  CAS  Google Scholar 

  35. Peitzsch M, Sulyok M, Taubel M, Vishwanath V, Krop E, Borras-Santos A et al. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Env Monitoring 2012; 14: 2044–2053.

    Article  CAS  Google Scholar 

  36. Degen GH . Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J 2011; 4: 315–327.

    Article  Google Scholar 

  37. Cruz LJ, Lugue-Ortega JR, Rivas L, Albericio F . Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents. Mol Pharmaceutics 2009; 6: 813–824.

    Article  CAS  Google Scholar 

  38. Chang J, Varghese DS, Gillam MC, Peyton M, Modi B, Schiltz R et al. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. BJ Cancer 2012; 106: 116–125.

    Article  CAS  Google Scholar 

  39. US 2007/0060509. Endoparasiticidal compositions for topical application.

  40. Baert B, Boonen J, Burvenich C, Roche N, Stillaert F, Blondeel P et al. A new discriminative criterion for the development of Franz diffusion tests for transdermal pharmaceuticals. J Pharm Pharmaceut Sci 2010; 13: 218–230.

    Article  CAS  Google Scholar 

  41. Taevernier L, Veryser L, Vandercruyssen K, D’Hondt M, Vansteelandt S, De Saeger S et al. Determination of the cyclic depsipeptide mycotoxins beauvericin and enniatins in in-vitro transdermal experiments. J Pharm Biomed Anal 2014; 100: 50–57.

    Article  CAS  PubMed  Google Scholar 

  42. OECD. Guidance document for the conduct of skin absorption studies. In: Publication, E.H.a.S. (Ed.), Paris 2004.

  43. De Spiegeleer B, Baert B, Vergote V, Van Dorpe S . Development of system suitability tests for in vitro skin integrity control: impedance and capacitance. The Eleventh International Perspectives in Percutaneous Penetration Conference, La Grande Motte, France, 2008; 43-43.

  44. ECETOC. 1993. Monograph Report No 20 Percutaneous absorption. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels.[45] EPA. 1992. Guidelines for exposure assessment, Washington DC.

  45. EPA. 1992. Guidelines for exposure assessment, Washington, DC.

  46. OECD. 2011. Guidance notes on dermal absorption: series on testing and assessment (No.156), Paris.

  47. Jones AD et al2004. CEFIC workshop on methods to determine dermal penetration for human risk assessment. European Chemical Industry Council, December, pp 1–86 (Research Report TM/04/07), http://www.iom-world.org/pubs/IOM_TM0407.pdf.

  48. Magnusson BM, Anissimov YG, Cross SE, Roberts MS . Molecular size as the main determinant of solute maximum flux across skin. J Invest Dermatol 2004; 122: 993–999.

    Article  CAS  PubMed  Google Scholar 

  49. CEFIC. 2004. Workshop on methods to determine dermal permeation for human risk assessment, Utrecht.

  50. Kroes R, Renwick AG, Feron V, Galli CL, Gibney M, Greim H et al. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem Toxicol 2007; 45: 2533–2562.

    Article  CAS  PubMed  Google Scholar 

  51. Mitragotri S, Anissimov YG, Bunge AL, Frasch F, Guy RH, Hadgraft J et al. Mathematical models of skin permeability: an overview. Int J Pharm 2011; 418: 115–129.

    Article  CAS  PubMed  Google Scholar 

  52. Riederer M, Schreiber L . Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Botany 2001; 52: 2023–2032.

    Article  CAS  Google Scholar 

  53. EPA. Risk assessment guidance for superfund volume I: human health evaluation manual—Part E, supplemental guidance for dermal risk assessment. Office of Superfund Remediation and Technology Innovation 2004. U.S. Environmental Protection Agency (EPA): Washington, DC.

  54. EPA. Dermal exposure assessment: a summary of EPA approaches. National Center for Environmental Assessment 2007. U.S. Environmental Protection Agency (EPA): Washington, DC.

  55. USEPA Exposure Factors Handbook 1997. U.S. Environmental Protection Agency (U.S. EPA): Washington, DC.

  56. CDER Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers 2005. U.S. Department of Health and Human Services. Food and Drug Administration (FDA). Center for Drug Evaluation and Research (CDER): Rockville, MD.

  57. Zhang Q, Li P, Roberts MS . Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Control Release 2011; 154: 50–57.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q, Peng L, Liu D, Roberts MS . Effect of vehicles on the maximum transepidermal flux of similar size phenolic compounds. Pharm Res 2013; 30: 32–40.

    Article  CAS  PubMed  Google Scholar 

  59. Pershing LK, Parry GE, Lambert LD . Disparity of in-vitro and in-vivo oleic acid-enhanced beta-estradial percutaneous-absorption across human skin. Pharm Res 1993; 10: 1745–1750.

    Article  CAS  PubMed  Google Scholar 

  60. Pirot F, Kalia YN, Stinchcomb AL, Keatings G, Bunge A . Characterization of the permeability barrier of human skin in vivo. Proc Natl Acad Sci USA 1997; 94: 1562–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bommannan O, Potts RO, Guy RH . Examination of stratum corneum barrier function in vivo by infrared spectroscopy. J Invest Dermatol 1990; 95: 403–408.

    Article  CAS  PubMed  Google Scholar 

  62. Guy RH . Predicting the rate and extent of fragrance chemical absorption into and through the skin. Chem Res Toxicol 2010; 23: 864–870.

    Article  CAS  PubMed  Google Scholar 

  63. Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES . Cell-penetrating peptides as novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80: 693–646.

    Article  CAS  Google Scholar 

  64. Chai HJ, Li JH, Huang HN, Li TL, Chan YL, Wu CJ . Effects of sizes and conformation of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency. J Biomed Biotech 2010; 2010: 757301.

    Google Scholar 

  65. Dawson BV, Hadley ME, Levine N, Kreutzfeld KL, Don S, Eytan BST et al. In vitro transdermal delivery of a melanotropic peptide through human skin. Soc Invest Dermatol 1990; 94: 432–435.

    Article  CAS  Google Scholar 

  66. Partidos CD, Beignon A-S, Brown F, Kramer E, Briand J-P, Muller S . Applying peptide antigens onto bare skin: induction of humoral and cellular immune responses and potential for vaccination. J Control Rel 2002; 85: 27–34.

    Article  CAS  Google Scholar 

  67. Stalmans S, Wynendaele E, Bracke N, Gevaert B, D’Hondt M, Peremans K . Chemical-functional diversity in cell-penetrating peptides. PLoS One 2013; 8: e71752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen M, Zakrewsky M, Gupta V, Anselmo AC, Slee DH, Muraski JA et al. Topical delivery of siRNA into skin using SPACE-peptide carriers. J Control Rel 2014; 179: 33–41.

    Article  CAS  Google Scholar 

  69. Hsu T, Mitragotri S . Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci USA 2011; 108: 15816–15821.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lopes LB, Brophy CM, Furnisch E, Flynn CR, Sparks O, Komalavilas P et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res 2005; 22: 750–757.

    Article  CAS  PubMed  Google Scholar 

  71. Manosroi J, Lohcharoenkal W, Gotz F, Werner RG, Manosroi W, Manosroi A . Transdermal absorption and stability enhancement of salmon calcitonin by tat peptide. Drug Dev Industrial Pharm 2013; 39: 520–525.

    Article  CAS  Google Scholar 

  72. Manosroi J, Khositsuntiwong N, Manosroi W, Gotz F, Werner RG, Manosroi A . Potent enhancement of transdermal absorption and stability of human tyrosinase plasmid by tat peptide and an entrapment in elastic cationic niosomes. Drug Delivery 2013; 20: 10–18.

    Article  CAS  PubMed  Google Scholar 

  73. Patlolla RR, Desai PR, Belay K, Singh MS . Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 2010; 31: 5598–5607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uchida T, Kanazawa T, Takashima Y, Okada H . Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, tat and AT-1002. Chem Pharm Bull 2011; 59: 196–201.

    Article  Google Scholar 

  75. Weecharangsan W, Opanasopit P, Lee RJ . Effect of depsipeptide on in vitro transfection efficiency of PEI/DNA complexes. Anticancer Res 2008; 28: 793–798.

    CAS  PubMed  Google Scholar 

  76. Nicoli S, Eeman M, Deleu M, Bresciani E, Padula C, Santi P . Effect of lipopeptides and iontophoresis on aciclovir skin delivery. J Pharm Pharmacol 2010; 62: 702–708.

    Article  CAS  PubMed  Google Scholar 

  77. Cleek RL, Bunge AL . A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm Res 1993; 10: 497–506.

    Article  CAS  PubMed  Google Scholar 

  78. Baert B, Deconinck E, Van Gele M, Slodicka M, Stoppie P, Bodé S et al. Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds. Bioorg Med Chem 2007; 15: 6943–6955.

    Article  CAS  PubMed  Google Scholar 

  79. Potts RO, Guy RH . Predicting skin permeability. Pharm Res 1992; 9: 663–669.

    Article  CAS  PubMed  Google Scholar 

  80. Bunner BL, Wannemacher RW, Dinterman RE, Broski FH . Cutaneous absorption and decontamination of [H-3] T-2 toxin in the rat model. J Toxicol Env Health 1989; 26: 413–423.

    Article  CAS  Google Scholar 

  81. Pang VF, Swanson SP, Beasley VR, Buck WB, Haschek WM . The toxicity of T-2 toxin in swine following topical application. 1. Clinical signs, pathology, and residue concentrations. Fundam Appl Toxicol 1987; 9: 41–49.

    Article  CAS  PubMed  Google Scholar 

  82. Heath WR, Carbone FR . The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013; 14: 978–985.

    Article  CAS  PubMed  Google Scholar 

  83. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ . Skin immune sentinels in health and disease. Nat Rev Immunol 2009; 9: 679–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ficheux AS, Sibiril Y, Parent-Massin D . Effects of beauvericin, enniatin b and moniliformin on human dendritic cells and macrophages: an in vitro study. Toxicon 2013; 71: 1–10.

    Article  CAS  PubMed  Google Scholar 

  85. Ivanova L, Egge-Jacobsen MW, Solhaug A, Thoen E, Faeste CK . Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells. Chem Res Toxicol 2012; 25: 1662–1674.

    Article  CAS  PubMed  Google Scholar 

  86. Macchia L, Caiaffa MF, Fornelli F, Calo L, Nenna S, Moretti A et al. Apoptosis induced by the Fusarium mycotoxin beauvericin in mammalian cells. J Appl Genet 2002; 43: 363–371.

    Google Scholar 

  87. Ojcius DM, Zychlinsky A, Li MZ, Young JDE . Ionophore-induced apoptosis—role of DNA fragmentation and calcium fluxes. Exp Cell Res 1991; 197: 43–49.

    Article  CAS  PubMed  Google Scholar 

  88. Gammelsrud A, Solhaug A, Dendele B, Sandberg WJ, Ivanova L, Bolling AK et al. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 2012; 261: 74–87.

    Article  CAS  PubMed  Google Scholar 

  89. Schaeuble K, Hauser MA, Rippl AV, Bruderer R, Otero C, Groettrup M et al. Ubiquitylation of the chemokine receptor CCR7 enables efficient receptor recycling and cell migration. J Cell Sci 2012; 125: 4463–4474.

    Article  CAS  PubMed  Google Scholar 

  90. Wu XF, Xu R, Ouyang ZJ, Qian C, Shen Y, Wu WD et al. Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway. PLoS One 2013; 8: e83013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baert B, De Spiegeleer B . Local skin pharmacokinetics of talarozole, a new retinoic acid metabolism-blocking agent. Skin Pharmacol Physiol 2011; 24: 151–159.

    Article  CAS  PubMed  Google Scholar 

  92. EFSA. question number: EFSA-Q-2010-00999; mandate number: M-2010-0305 http://registerofquestions.efsa.europa.eu/raw-war/login.

  93. Bosch U, Mirocha CJ, Abbas HK, Dimenna M . Toxicity and toxin production by Fusarium isolates from New Zealand. Mycopathologia 1989; 108: 73–79.

    Article  CAS  PubMed  Google Scholar 

  94. Gäumann E, Naef-Roth S, Ettlinger L . Zur gewinnung von enniatinen aus dem myzel verschiedener Fusarien. J Phytopathol 1950; 16: 289–299.

    Google Scholar 

  95. Wannemacher RW, Bunner DL, Dinterman RE . Parenteral, dermal, and transdermal toxicity of depsipeptide ionophores, enniatin and valinomycin. FASEB J 1988; 2: A1351–A1351.

    Google Scholar 

  96. Devreese M, Broekaert N, De Mil T, Fraeyman S, De Backer P, Croubels S . Pilot toxicokinetic study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food Chem Toxicol 2014; 63: 161–165.

    Article  CAS  PubMed  Google Scholar 

  97. IRIS. 1993. Reference Dose (RfD): Description and use in health risk assessment. Integrated Risk Information System (IRIS) http://www.epa.gov/iris/rfd.htm.

  98. Locabiotal®, patient information leaflet.

Download references

Acknowledgements

We thank the Special Research Fund of Ghent University (BOF 01D23812 to Lien Taevernier) for their financial funding and scientific interest. We also thank Sven Detroyer for his help during the solubility experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Spiegeleer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taevernier, L., Veryser, L., Roche, N. et al. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). J Expo Sci Environ Epidemiol 26, 277–287 (2016). https://doi.org/10.1038/jes.2015.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.10

  • Springer Nature America, Inc.

Keywords

Navigation