Skip to main content

Advertisement

Log in

Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1–9 and lentiviral vectors

  • Original Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Schwann cells (SCs) in an injured peripheral nerve form pathways for regenerating axons. Although these cells initially support regeneration, SCs lose their pro-regenerative properties following a prolonged period of denervation. Gene transfer to SC can enhance their therapeutic potential. In this article, we compared adeno-associated viral (AAV) vectors based on serotypes 1–9 for their capability to transduce cultured primary rat and human SCs and nerve segments. AAV1 is the best serotype to transduce rat SCs, whereas AAV2 and AAV6 performed equally well in human SCs. Transduction of monolayers of cultured rat and human SCs did not accurately predict the transduction efficiency in nerve segments. Rat nerve segments could be genetically modified equally well by a set of four AAV vectors (AAV1, AAV5, AAV7, AAV9), whereas AAV2 was superior in human nerve segments. The current experiments were undertaken as a first step towards future clinical implementation of ex vivo AAV-based gene therapy in surgical nerve repair. The transduction of rat and human SCs and nerve segments by entirely different AAV serotypes, as documented here, highlights one of the challenges of translating gene therapy from experimental animals to human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Scheib J, Hoke A . Advances in peripheral nerve regeneration. Nat Rev Neurol 2013; 9: 668–676.

    Article  CAS  PubMed  Google Scholar 

  2. Hoke A . Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2006; 2: 448–454.

    Article  CAS  PubMed  Google Scholar 

  3. Brushart TM . Nerve Repair. Oxford University Press: Oxford, 2011.

    Book  Google Scholar 

  4. Ray WZ, Mackinnon SE . Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 2010; 223: 77–85.

    Article  PubMed  Google Scholar 

  5. Brosius LA, Barres BA . Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 2014; 28: 7–17.

    Article  Google Scholar 

  6. Kidd GJ, Ohno N, Trapp BD . Biology of Schwann cells. Handb Clin Neurol 2013; 115: 55–79.

    Article  PubMed  Google Scholar 

  7. Stoll G, Muller HW . Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 1999; 9: 313–325.

    Article  CAS  PubMed  Google Scholar 

  8. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 2012; 75: 633–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fontana X, Hristova M, Da CC, Patodia S, Thei L, Makwana M et al. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 2012; 198: 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB . Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50: 945–970.

    Article  CAS  PubMed  Google Scholar 

  11. Gordon T . The physiology of neural injury and regeneration: the role of neurotrophic factors. J Commun Disord 2010; 43: 265–273.

    Article  PubMed  Google Scholar 

  12. Rotshenker S . Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflamm 2011; 8: 109.

    Article  CAS  Google Scholar 

  13. Gordon T, Tyreman N, Raji MA . The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci 2011; 31: 5325–5334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sulaiman W, Gordon T . Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 2013; 13: 100–108.

    PubMed  PubMed Central  Google Scholar 

  15. Mason MR, Tannemaat MR, Malessy MJ, Verhaagen J . Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 2011; 11: 75–89.

    Article  CAS  PubMed  Google Scholar 

  16. Dijkhuizen PA, Hermens WT, Teunis MA, Verhaagen J . Adenoviral vector-directed expression of neurotrophin-3 in rat dorsal root ganglion explants results in a robust neurite outgrowth response. J Neurobiol 1997; 33: 172–184.

    Article  CAS  PubMed  Google Scholar 

  17. Glatzel M, Flechsig E, Navarro B, Klein MA, Paterna JC, Bueler H et al. Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc Natl Acad Sci USA 2000; 97: 442–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guenard V, Schweitzer B, Flechsig E, Hemmi S, Martini R, Suter U et al. Effective gene transfer of lacZ and P0 into Schwann cells of P0-deficient mice. Glia 1999; 25: 165–178.

    Article  CAS  PubMed  Google Scholar 

  19. Jani A, Menichella D, Jiang H, Chbihi T, Acsadi G, Shy ME et al. Modulation of cell-mediated immunity prolongs adenovirus-mediated transgene expression in sciatic nerve. Hum Gene Ther 1999; 10: 787–800.

    Article  CAS  PubMed  Google Scholar 

  20. Shy ME, Tani M, Shi YJ, Whyatt SA, Chbihi T, Scherer SS et al. An adenoviral vector can transfer lacZ expression into Schwann cells in culture and in sciatic nerve. Ann Neurol 1995; 38: 429–436.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe TS, Ohtori S, Koda M, Aoki Y, Doya H, Shirasawa H et al. Adenoviral gene transfer in the peripheral nervous system. J Orthop Sci 2006; 11: 64–69.

    Article  CAS  PubMed  Google Scholar 

  22. Eggers R, Hendriks WT, Tannemaat MR, van Heerikhuize JJ, Pool CW, Carlstedt TP et al. Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots. Mol Cell Neurosci 2008; 39: 105–117.

    Article  CAS  PubMed  Google Scholar 

  23. Eggers R, De WF, Hoyng SA, Roet KC, Ehlert EM, Malessy MJ et al. Lentiviral vector-mediated gradients of GDNF in the injured peripheral nerve: effects on nerve coil formation, Schwann cell maturation and myelination. PLoS One 2013; 8: e71076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tannemaat MR, Eggers R, Hendriks WT, de Ruiter GC, van Heerikhuize JJ, Pool CW et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 2008; 28: 1467–1479.

    Article  PubMed  Google Scholar 

  25. Gonzalez S, Fernando RN, Perrin-Tricaud C, Tricaud N . In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors. Nat Protoc 2014; 9: 1160–1169.

    Article  PubMed  Google Scholar 

  26. Aspalter M, Vyas A, Feiner J, Griffin J, Brushart T, Redett R . Modification of Schwann cell gene expression by electroporation in vivo. J Neurosci Methods 2009; 176: 96–103.

    Article  CAS  PubMed  Google Scholar 

  27. Hoyng SA, De WF, Gnavi S, de BR, Boon LI, Korvers LM et al. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol 2014; 261: 578–593.

    Article  CAS  PubMed  Google Scholar 

  28. Allodi I, Mecollari V, Gonzalez-Perez F, Eggers R, Hoyng S, Verhaagen J et al. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014; 62: 1736–1746.

    Article  PubMed  Google Scholar 

  29. Godinho MJ, Teh L, Pollett MA, Goodman D, Hodgetts SI, Sweetman I et al. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One 2013; 8: e69987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Ping P, Jiang H, Liu K . Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve. Microsurgery 2006; 26: 116–121.

    Article  CAS  PubMed  Google Scholar 

  31. Santosa KB, Jesuraj NJ, Viader A, MacEwan M, Newton P, Hunter DA et al. Nerve allografts supplemented with schwann cells overexpressing glial-cell-line-derived neurotrophic factor. Muscle Nerve 2013; 47: 213–223.

    Article  CAS  PubMed  Google Scholar 

  32. Shakhbazau A, Kawasoe J, Hoyng SA, Kumar R, van MJ, Verhaagen J et al. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci 2012; 50: 103–112.

    Article  CAS  PubMed  Google Scholar 

  33. Haastert K, Lipokatic E, Fischer M, Timmer M, Grothe C . Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol Dis 2006; 21: 138–153.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitte R, Tipold A, Stein VM, Schenk H, Flieshardt C, Grothe C et al. Genetically modified canine Schwann cells—in vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering. J Neurosci Methods 2010; 186: 202–208.

    Article  CAS  PubMed  Google Scholar 

  35. De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 2005; 105: 2307–2315.

    Article  CAS  PubMed  Google Scholar 

  36. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  37. Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C, Artus A et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther 2014; 22: 774–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 2013; 80: 1698–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  40. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 2008; 28: 2303–2304.

    Article  CAS  PubMed  Google Scholar 

  41. Girard C, Tenenbaum L, Chtarto A, Attali B, Salvetti A, Bachelin C et al. Efficiency of adeno-associated virus type-2 vectors in non-human primate Schwann cells. Neuroreport 2005; 16: 1757–1762.

    Article  CAS  PubMed  Google Scholar 

  42. Homs J, Ariza L, Pages G, Udina E, Navarro X, Chillon M et al. Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Therapy 2011; 18: 622–630.

    Article  CAS  PubMed  Google Scholar 

  43. Tannemaat MR, Boer GJ, Verhaagen J, Malessy MJ . Genetic modification of human sural nerve segments by a lentiviral vector encoding nerve growth factor. Neurosurgery 2007; 61: 1286–1294.

    Article  PubMed  Google Scholar 

  44. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    Article  CAS  PubMed  Google Scholar 

  45. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G et al. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 1989; 37: 315–321.

    Article  CAS  PubMed  Google Scholar 

  46. Hendriks WT, Eggers R, Carlstedt TP, Zaldumbide A, Tannemaat MR, Fallaux FJ et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restor Neurol Neurosci 2007; 25: 585–599.

    PubMed  Google Scholar 

  47. Mayginnes JP, Reed SE, Berg HG, Staley EM, Pintel DJ, Tullis GE . Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. J Virol Methods 2006; 137: 193–204.

    Article  CAS  PubMed  Google Scholar 

  48. De Winter F, Hoyng S, Tannemaat M, Eggers R, Mason M, Malessy M et al. Gene therapy approaches to enhance regeneration of the injured peripheral nerve. Eur J Pharmacol 2013; 719: 145–152.

    Article  CAS  PubMed  Google Scholar 

  49. Pleticha J, Heilmann LF, Evans CH, Asokan A, Samulski RJ, Beutler AS . Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs. Mol Pain 2014; 10: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huang LY, Halder S, Agbandje-McKenna M . Parvovirus glycan interactions. Curr Opin Virol 2014; 7: 108–118.

    Article  CAS  PubMed  Google Scholar 

  51. Murlidharan G, Samulski RJ, Asokan A . Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7: 76.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Agbandje-McKenna M, Kleinschmidt J . AAV capsid structure and cell interactions. Methods Mol Biol 2011; 807: 47–92.

    Article  CAS  PubMed  Google Scholar 

  53. Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 2010; 84: 12945–12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ . Alpha2,3 and alpha2,6N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80: 9093–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 2006; 80: 11393–11397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao GP, Van VK et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 2011; 121: 2427–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A . Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011; 286: 13532–13540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80: 8961–8969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A . Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  61. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  63. Carey DJ, Todd MS . A cytoskeleton-associated plasma membrane heparan sulfate proteoglycan in Schwann cells. J Biol Chem 1986; 261: 7518–7525.

    CAS  PubMed  Google Scholar 

  64. Carey DJ, Crumbling DM, Stahl RC, Evans DM . Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins. J Biol Chem 1990; 265: 20627–20633.

    CAS  PubMed  Google Scholar 

  65. Sudhalter J, Whitehouse L, Rusche JR, Marchionni MA, Mahanthappa NK . Schwann cell heparan sulfate proteoglycans play a critical role in glial growth factor/neuregulin signaling. Glia 1996; 17: 28–38.

    Article  CAS  PubMed  Google Scholar 

  66. Field MC, Wing DR, Dwek RA, Rademacher TW, Schmitz B, Bollensen E et al. Detection of multisulphated N-linked glycans in the L2/HNK-1 carbohydrate epitope expressing neural adhesion molecule P0. J Neurochem 1992; 58: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  67. Furusho M, Dupree JL, Bryant M, Bansal R . Disruption of fibroblast growth factor receptor signaling in nonmyelinating Schwann cells causes sensory axonal neuropathy and impairment of thermal pain sensitivity. J Neurosci 2009; 29: 1608–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wakatsuki S, Araki T, Sehara-Fujisawa A . Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing alpha5 beta1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells 2014; 19: 66–77.

    Article  CAS  PubMed  Google Scholar 

  69. Martini R, Xin Y, Schmitz B, Schachner M . The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves. Eur J Neurosci 1992; 4: 628–639.

    Article  PubMed  Google Scholar 

  70. Mietzsch M, Broecker F, Reinhardt A, Seeberger PH, Heilbronn R . Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J Virol 2014; 88: 2991–3003.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaminsky PM, Keiser NW, Yan Z, Lei-Butters DC, Engelhardt JF . Directing integrin-linked endocytosis of recombinant AAV enhances productive FAK-dependent transduction. Mol Ther 2012; 20: 972–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keiser NW, Yan Z, Zhang Y, Lei-Butters DC, Engelhardt JF . Unique characteristics of AAV1, 2, and 5 viral entry, intracellular trafficking, and nuclear import define transduction efficiency in HeLa cells. Hum Gene Ther 2011; 22: 1433–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nonnenmacher M, Weber T . Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2011; 10: 563–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Iyer SM, Montgomery KL, Towne C, Lee SY, Ramakrishnan C, Deisseroth K et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol 2014; 32: 274–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mason MR, Ehlert EM, Eggers R, Pool CW, Hermening S, Huseinovic A et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther 2010; 18: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Royo NC, Vandenberghe LH, Ma JY, Hauspurg A, Yu L, Maronski M et al. Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 2008; 1190: 15–22.

    Article  CAS  PubMed  Google Scholar 

  78. Kotterman MA, Schaffer DV . Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 2014; 15: 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hermens WT, ter BO, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA et al. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 1999; 10: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  80. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 2004; 5: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  82. Federa. Human tissue and medical research: code of conduct for responsible use. http://www.federa.org/〉 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Verhaagen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyng, S., De Winter, F., Gnavi, S. et al. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1–9 and lentiviral vectors. Gene Ther 22, 767–780 (2015). https://doi.org/10.1038/gt.2015.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.47

  • Springer Nature Limited

This article is cited by

Navigation