Skip to main content

Advertisement

Log in

Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading cause of deaths. Currently, different treatment methods are available like chemotherapy, radiation therapy, surgery or their combination. These treatment strategies are not enough and are often associated with adverse side effects. The alternate treatment option like phytochemicals have come up with ease of bioavailability and cost-effectiveness. Due to general acceptance, lower side effects, safety and pleiotropic effect, phytochemicals can be used as an adjuvant treatment for alleviating side effects associated with chemotherapy and radiotherapy. Phytochemicals perform multiple functions; release cytochrome-c, loss mitochondrial membrane potential, down-regulate expression of anti-apoptotic proteins, up-regulate pro-apoptotic proteins, activate caspases, p53, inhibit Akt/mTOR signaling pathway, phosphorylate NF-κB, STAT3 and PI3K. The knowledge compiled here encompasses anti-EC phytochemicals, their occurrence, bioavailability therapeutic effects and mechanism of action by targeting several genes and signaling pathways. Overall, the clinical data compiled on phytochemicals against EC is not sufficient and need future research to provide additional insights for developing potential anticancer drugs in pharma industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ueda H, Takeda M, Ueda S, Kawakami H, Okuno T, Takegawa N, et al. Clinical evaluation of palliative chemoradiotherapy for metastatic esophageal cancer. Oncotarget 2017;8(46):80286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  3. Zhu H, Jin H, Pi J, Bai H, Yang F, Wu C, et al. Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures. Scanning 2016;38(4):322–8.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel RL, Kimberly KD, Jemal MPH. Cancer Statistics, 2018. CA Cancer J Clin 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  5. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013;381:400–12.

    Article  PubMed  Google Scholar 

  6. Mao WM, Zheng WH, Ling ZQ. Epidemiologic risk factors for esophageal cancer development. Asian Pac J Cancer Prev 2011;12(10):2461–6.

    PubMed  Google Scholar 

  7. Mir MM, Dar NA. Esophageal cancer in Kashmir (India): an enigma for researchers. Int J Health Sci 2009;3(1):71–85.

    Google Scholar 

  8. Bathija GV, Bant SIDD, Lokhare L. Study on socio-demographic and associated risk factors for oesophageal cancer in Karnataka Institute of Medical Sciences Hospital, Hubli, Karnataka. J App Med Sci 2014;2(2C):706–10.

    Google Scholar 

  9. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015;64:381–7.

    Article  PubMed  Google Scholar 

  10. Zhang Y. Epidemiology of esophageal cancer. World J gastroenterol 2013;19(34):5598–606.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eslick GD. Epidemiology of esophageal cancer. Gastroenterol Clin North Am 2009;38(1):17–25.

    Article  PubMed  Google Scholar 

  12. Napier KJ, Scheerer M, Misra S. Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 2014;6(5):112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang CS, Chen X, Tu S. Etiology and prevention of esophageal cancer. Gastrointest Tumors 2016;3(1):3–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wong MC, Hamilton W, Whiteman DC, Jiang JY, Qiao Y, Fung FD, et al. Global incidence and mortality of oesophageal cancer and their correlation with socioeconomic indicators temporal patterns and trends in 41 countries. Sci Rep 2018;8(1):4522.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Rathore SS. An introduction to esophageal cancer: pathogenesis, types and risk factors. Ind J Res Anvikshiki/Sci 2012;6:10–4.

    Google Scholar 

  16. Mohammed ME, Abuidris DO, Elgaili EM, Gasmelseed N. Predominance of females with oesophageal cancer in Gezira, Central Sudan. Arab J Gastroenterol 2012;13(4):174–7.

    Article  PubMed  Google Scholar 

  17. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. J Semradonc 2006;17(1):2–9.

    Google Scholar 

  18. Chhikara N, Kour R, Jaglan S, Gupta P, Gat Y, Panghal A. Citrus medica: nutritional, phytochemical composition and health benefits — a review. Food Funct 2018;9(4)1978–92 25.

    Article  CAS  PubMed  Google Scholar 

  19. Chhikara N, Devi HR, Jaglan S, Sharma P, Gupta P, Panghal A. Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): a review. Agric Food Secur 2018;7(1):46.

    Article  Google Scholar 

  20. Sardana RK, Chhikara N, Tanwar B, Panghal A. Dietary impact on esophageal cancer in humans: a review. Food Funct 2018;9(4):1967–77.

    Article  CAS  PubMed  Google Scholar 

  21. Kubo A, Corley DA, Jensen CD, Kaur R. Dietary factors and the risks of oesophageal adenocarcinoma and Barrett’s oesophagus. Nutr Res Rev 2010;23(2):230–46.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Castellsague X, Munoz N, De Stefani E, Victora CG, Castelletto R, Rolon PA. Influence of mate drinking, hot beverages and diet on esophageal cancer risk in South America. Int J Cancer 2000;88(4):658–64.

    Article  CAS  PubMed  Google Scholar 

  23. Chitra S, Ashok L, Anand L, Srinivasan V, Jayanthi V. Risk factors for esophageal cancer in Coimbatore, southern India: a hospital-based case-control study. Indian J Gastroenterol 2004;23(1):19–21.

    CAS  PubMed  Google Scholar 

  24. Lu XL, Zeng J, Chen YL, He PM, Wen MX, Ren MD, et al. Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo: involvement of cell cycle arrest and apoptosis induction. Int J Oncol 2013;42(1):229–38.

    Article  CAS  PubMed  Google Scholar 

  25. Kok TW, Yue PY, Mak NK, Fan TPD, Liu L, Wong RN. The anti-angiogenic effect of sinomenine. Angiogenesis 2005;8(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang T, Zhou L, Zhang W, Qu D, Xu X, Yang Y, et al. Effects of sinomenine on proliferation and apoptosis in human lung cancer cell line NCI-H460 in vitro. Mol Med Rep 2010;3(1):51–6.

    CAS  PubMed  Google Scholar 

  27. Wang J, Yang ZR, Dong WG, Zhang JX, Guo XF, Song J, et al. Cooperative inhibitory effect of sinomenine combined with 5-fluorouracil on esophageal carcinoma. World J Gastroenterol 2013;WJG 19(45):8292–300.

    Article  CAS  Google Scholar 

  28. White NJ. Qinghaosu (artemisinin): the price of success. Science 2008;320(5874):330–4.

    Article  CAS  PubMed  Google Scholar 

  29. Shi R, Cui H, Bi Y, Huang X, Song B, Cheng C, et al. Artesunate altered cellular mechanical properties leading to deregulation of cell proliferation and migration in esophageal squamous cell carcinoma. Oncol Lett 2015;9(5):2249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saunders WS, Shuster M, Huang X, Gharaibeh B, Enyenihi AH, Petersen I, et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc Natl Acad Sci USA 2000;97(1):303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun J, Chu YF, Wu X, Liu RH. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002;50(25):7449–54.

    Article  CAS  PubMed  Google Scholar 

  32. Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, et al. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol 2007;30(3):605–13.

    CAS  PubMed  Google Scholar 

  33. Kawada M, Ohno Y, Ri Y, Ikoma T, Yuugetu H, Asai T, et al. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anti-Cancer Drugs 2001;12(10):847–52.

    Article  CAS  PubMed  Google Scholar 

  34. Csokay B, Prajda N, Weber G, Olah E. Molecular mechanisms in the antiproliferative action of quercetin. Life Sci 1997;60(24):2157–63.

    Article  CAS  PubMed  Google Scholar 

  35. Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod 1995;58(2):217–25.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen TTT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 2004;25(5):647–59.

    Article  CAS  PubMed  Google Scholar 

  37. Chuang-Xin L, Wen-Yu W, Yao CUI, Xiao-Yan L, Yun Z. Quercetin enhances the effects of 5 fluorouracil mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF κB. Oncol Lett 2012;4(4):775–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Tillhon M, Ortiz LMG, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol 2012;84(10):1260–7.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, Jiang H, Liu Z, Wang Y, Zhao M, Hao C, et al. Berberine radiosensitizes human esophageal cancer cells by downregulating homologous recombination repair protein RAD51. PLoS ONE 2011;6(8):e23427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iizuka N, Miyamoto K, Okita K, Tangoku A, Hayashi H, Yosino S, et al. Inhibitory effect of Coptidis rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett 2000;148(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  41. Fukutake M, Yokota S, Kawamura H, Iizuka A, Amagaya S, Fukuda K, et al. Inhibitory effect of Coptidis rhizoma and Scutellariae Radix on azoxymethane-induced aberrant crypt foci formation in rat colon. Biol Pharm Bull 1998;21(8):814–7.

    Article  CAS  PubMed  Google Scholar 

  42. Mishan MA, Ahmadiankia N, Moghaddam MM, Heirani-Tabasi A, Shahriyari M, Bidkhori HR, et al. Role of Berberine on molecular markers involved in migration of esophageal cancer cells. Cell Mol Biol 2015;61(8):37–43.

    CAS  PubMed  Google Scholar 

  43. Yu R, Zhang ZQ, Wang B, Jiang HX, Cheng L, Shen LM. Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int 2014;14(1):14–49.

    Article  CAS  Google Scholar 

  44. Jiang SX, Qi B, Yao WJ, Gu CW, Wei XF, Zhao Y, et al. Berberine displays antitumor activity in esophageal cancer cells in vitro. World J Gastroenterol 2017;23(14):2511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawamura H, Mishima K, Sharmin T, Ito S, Kawakami R, Kato T, et al. Ultrasonically enhanced extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt. using liquid carbon dioxide and ethanol. Ultrason Sonochem 2016;29:19–26.

    Article  CAS  PubMed  Google Scholar 

  46. Kim DI, Lee TK, Lim IS, Kim H, Lee YC, Kim CH. Regulation of IGF-I production and proliferation of human leiomyomal smooth muscle cells by Scutellaria barbata D. Don in vitro: isolation of flavonoids of apigenin and luteolin as acting compounds. Toxicol Appl Pharmacol 2005;205(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  47. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol 2007;30(1):233–45.

    CAS  PubMed  Google Scholar 

  48. Chen S, Gao J, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol 2005;26(3):579–88.

    PubMed  Google Scholar 

  49. Liu JB, Yue JY. Preliminary study on the mechanism of oridonin-induced apoptosis in human squamous cell oesophageal carcinoma cell line EC9706. J Int Med Res 2014;42(4):984–92.

    Article  PubMed  CAS  Google Scholar 

  50. Liu JJ, Wu XY, Peng J, Pan XL, Lu HL. Antiproliferation effects of oridonin on HL-60 cells. Ann Hematol 2004;83(11):691–5.

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Zhang H, Zhou B, Han S, Zhang Y. Clinical efficacy of endoscopic submucosal dissection in the treatment of early esophageal cancer and precancerous lesions. J Cancer Res Ther 2018;14(1):52–6.

    Article  PubMed  Google Scholar 

  52. Liu JJ, Huang RW, Lin DJ, Wu XY, Peng J, Pan XL, et al. Antiproliferation effects of oridonin on HPB-ALL cells and its mechanisms of action. Am J Hematol 2006;81(2):86–94.

    Article  CAS  PubMed  Google Scholar 

  53. Jin S, Shen JN, Wang J, Huang G, Zhou JG. Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells. Cancer Biol Ther 2007;6(2):261–8.

    Article  CAS  PubMed  Google Scholar 

  54. Pi J, Jiang J, Cai H, Yang F, Jin H, Yang P, et al. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv 2017;24(1):1549–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu XH, Qiu YD, Shi MK, Wu B, Zheng XG, Ding YT. Effect of matrine on cold ischemia and reperfusion injury of sinusoidal endothelial cells in rat orthotopic liver transplantation. Acta Pharmacol Sin 2003;24(2):169–74.

    CAS  PubMed  Google Scholar 

  56. Wang Q, Du H, Geng G, Zhou H, Xu M, Cao H, et al. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells. Mol Biol Rep 2004;41(5):3009–20.

    Article  CAS  Google Scholar 

  57. Liu T, Song Y, Chen H, Pan S, Sun X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol Pharm Bull 2010;33(10):1740–5.

    Article  CAS  PubMed  Google Scholar 

  58. Gao D, Yang F, Xia Z, Zhang Q. Molecularly imprinted polymer for the selective extraction of luteolin from Chrysanthemum morifolium Ramat. J Sep Sci 2016;39(15):3002–10.

    Article  CAS  PubMed  Google Scholar 

  59. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr cancer drug targets 2008;8(7):634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen P, Zhang JY, Sha BB, Ma YE, Hu T, Ma YC, et al. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget 2017;8(16):27471–80.

    PubMed  PubMed Central  Google Scholar 

  61. Ko WG, Kang TH, Lee SJ, Kim YC, Lee BH. Effects of luteolin on the inhibition of proliferation and induction of apoptosis in human myeloid leukaemia cells. Phytother Res 2002;16(3):295–8.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Q, Zhao XH, Wang ZJ. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro 2009;23(5):797–807.

    Article  CAS  PubMed  Google Scholar 

  63. Xu H, Yang T, Liu X, Tian Y, Chen X, Yuan R, et al. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci 2016;144:138–47.

    Article  CAS  PubMed  Google Scholar 

  64. Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 2007;87(1):130–40.

    Article  CAS  PubMed  Google Scholar 

  65. Diaz JG, Carmona AJ, Torres F, Quintana J, Estevez F, Herz W. Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana. Planta Med 2008;74(02):171–4.

    Article  CAS  PubMed  Google Scholar 

  66. Xu HB, Huang ZQ. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vasc Pharmacol 2007;47(1):18–24.

    Article  CAS  Google Scholar 

  67. Li W, Wang M, Wang L, Ji S, Zhang J, Zhang C. Icariin synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cell Biochem Biophys 2014;68(2):427–36.

    Article  PubMed  CAS  Google Scholar 

  68. Gu ZF, Zhang ZT, Wang JY, Xu BB. Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ Toxicol Pharmacol 2017;54:7–13.

    Article  CAS  PubMed  Google Scholar 

  69. Troselj KG, Kujundzic RN. Curcumin in combined cancer therapy. Curr Pharm Des 2014;20(42):6682–96.

    Article  CAS  PubMed  Google Scholar 

  70. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, et al. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS ONE 2012;7(2):e30590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin: miniperspective. J Med Chem 2017;60(5):1620–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L, et al. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J Cell Biochem 2011;112(4):1055–60.

    Article  CAS  PubMed  Google Scholar 

  73. Hartojo W, Silvers AL, Thomas DG, Seder CW, Lin L, Rao H, et al. Curcumin promotes apoptosis, increases chemosensitivity, and inhibits nuclear factor κB in esophageal adenocarcinoma. Transl Oncol 2010;3(2):99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tian F, Song M, Xu PR, Liu HT, Xue LX. Curcumin promotes apoptosis of esophageal squamous carcinoma cell lines through inhibition of NF-κB signaling pathway. Ai zheng=Aizheng=Chin J cancer 2008;27(6):566–70.

    CAS  Google Scholar 

  75. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006;442(7104):823–6.

    Article  CAS  PubMed  Google Scholar 

  76. Mendelson J, Song S, Li Y, Maru DM, Mishra B, Davila M, et al. Dysfunctional transforming growth factor-β signaling with constitutively active notch signaling in Barrett’s esophageal adenocarcinoma. Cancer 2011;117(16):3691–702.

    Article  CAS  PubMed  Google Scholar 

  77. Peters JH, Avisar N. The molecular pathogenesis of Barrett’s esophagus: common signaling pathways in embryogenesis metaplasia and neoplasia. J Gastrointest Surg 2010;14(1):81–7.

    Article  Google Scholar 

  78. Zhang FJ, Zhang HS, Liu Y, Huang YH. Curcumin inhibits Ec109 cell growth via an AMPK-mediated metabolic switch. Life Sci 2015;134:49–55.

    Article  CAS  PubMed  Google Scholar 

  79. O’Sullivan-Coyne G, O’sullivan GC, O’Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 2009;101(9):1585–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005;16(8):449–66.

    Article  CAS  PubMed  Google Scholar 

  81. Yamai H, Sawada N, Yoshida T, Seike J, Takizawa H, Kenzaki K, et al. Triterpenes augment the inhibitory effects of anticancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J cancer 2009;125(4):952–60.

    Article  CAS  PubMed  Google Scholar 

  82. Li L, Qi FY, Liu JR, Zuo LF. Effects of ginsenoside Rh2 (GS-Rh2) on cell cycle of Eca-109 esophageal carcinoma cell line. Zhongguo Zhong yao za zhi=Zhongguo zhongyao zazhi. J Chin Mater Med 2005;30(20):1617–21.

    CAS  Google Scholar 

  83. Yano H, Mizoguchi A, Fukuda K, Haramaki M, Ogasawara S, Momosaki S, et al. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res 1994;54(2):448–54.

    CAS  PubMed  Google Scholar 

  84. Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, et al. Potential phytochemicals in the fight against skin cancer: current landscape and future perspectives. Biomed Pharmacother 2018;109:1381–93.

    Article  PubMed  CAS  Google Scholar 

  85. Giri AK, Rawat JK, Singh M, Gautam S, Kaithwas G. Effect of lycopene against gastroesophageal reflux disease in experimental animals. BMC Complement Altern Med 2015;15(1):110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Adaki S, Adaki R, Shah K, Karagir A. Garlic: review of literature. Indian J Cancer 2014;51(4):577–81.

    Article  PubMed  Google Scholar 

  87. Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 2015;22(16):1382–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Kanwal S, Ali B, et al. Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother 2018;108:752–6.

    Article  CAS  PubMed  Google Scholar 

  89. Ruiz RB, Hernandez PS. Cancer chemoprevention by dietary phytochemicals: epidemiological evidence. Maturitas 2016;94:13–9.

    Article  CAS  Google Scholar 

  90. Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, et al. Potential phytocompounds for developing breast cancer therapeutics: nature’s healing touch. Eur J Pharmacol 2018;827:125–48.

    Article  CAS  PubMed  Google Scholar 

  91. Abbasi BA, Iqbal J, Mahmood T, Khalil AT, Khan B, Kanwal S, et al. Role of dietary phytochemicals in the modulation of miRNA expression: natural swords combating breast cancer. Asian Pac J Trop Med 2018;11(9):501–9.

    Article  Google Scholar 

  92. Chhikara N, Kushwaha K, Sharma P, Gat Y, Panghal A. Bioactive compounds of beetroot and utilization in food processing industry: a critical review. Food Chem 2018;272:192–200.

    Article  PubMed  CAS  Google Scholar 

  93. Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini — a review. Food Funct 2018;9(12):6096–115.

    Article  CAS  PubMed  Google Scholar 

  94. Jordan T, Mastnak DM, Palamar N, Kozjek NR. Nutritional therapy for patients with esophageal cancer. Nutr Cancer 2018;70(1):23–9.

    Article  PubMed  Google Scholar 

  95. Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, et al. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 2018;23(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Iqbal J, Abbasi BA, Khalil AT, Ali B, Mahmood T, Kanwal S, et al. Dietary isoflavones, the modulator of breast carcinogenesis: current landscape and future perspectives. Asian Pac J Trop Med 2018;11(3):186–93.

    Article  Google Scholar 

  97. Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer 2005;113(3):456–63.

    Article  CAS  PubMed  Google Scholar 

  98. Wu IC, Lu CY, Kuo FC, Tsai SM, Lee KW, Kuo WR, et al. Interaction between cigarette, alcohol and betel nut use on esophageal cancer risk in Taiwan. Eur J Clin Invest 2006;36(4):236–41.

    Article  CAS  PubMed  Google Scholar 

  99. Dar NA, Mir MM, Salam I, Malik MA, Gulzar GM, Yatoo GN, et al. Association between copper excess, zinc deficiency, and TP53 mutations in esophageal squamous cell carcinoma from Kashmir Valley, India—a high risk area. Nutr Cancer 2006;60(5):585–91.

    Article  CAS  Google Scholar 

  100. Herszenyi L, Barabas L, Hritz I, Istvan G, Tulassay Z. Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol 2014;20(37):13246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, Agarwal R, et al. Chemopreventive properties of dietary rice bran: current status and future prospects. Adv Nutr 2012;3(5):643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morris Brown L, Hoover R, Silverman D, Baris D, Hayes R, Swanson GM, et al. Excess incidence of squamous cell esophageal cancer among US Black men: role of social class and other risk factors. Am J Epidemiol 2001;153(2):114–22.

    Article  Google Scholar 

  103. Islami F, Pourshams A, Nasrollahzadeh D, Kamangar F, Fahimi S, Shakeri R, et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ 2009;338:b929.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dar NA, Bhat GA, Shah IA, Iqbal B, Rafiq R, Nabi S, et al. Salt tea consumption and esophageal cancer: a possible role of alkaline beverages in esophageal carcinogenesis. Int J Cancer 2015;136(6):704–10.

    Article  CAS  Google Scholar 

  105. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, et al. Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed 2017;7(12):1129–50.

    Article  Google Scholar 

  106. Yip PY, Kwan HS. Molecular identification of Astragalus membranaceus at the species and locality levels. J Ethnopharmacol 2006;106(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  107. Panico AM, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle G. Protective effect of Capparis spinosa on chondrocytes. Life Sci 2005;77(20):2479–88.

    Article  CAS  PubMed  Google Scholar 

  108. Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT, et al. natural products for cancer therapy. Expert Opin Investig Drugs 2012;21(12):1801–18.

    Article  CAS  PubMed  Google Scholar 

  109. Tanwar B, Modgil R, Flavonoids:. Dietary occurrence and health benefits. Spatula DD 2012;2(1):59–68.

    Article  Google Scholar 

  110. Yan S, Tian S, Kang Q, Xia Y, Li C, Chen Q, et al. Rhizoma paridis saponins suppresses tumor growth in a rat model of N-Nitrosomethylbenzylamine-induced esophageal cancer by inhibiting cyclooxygenases-2 pathway. PLOS ONE 2015;10(7):e0131560.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. McFadden DW, Riggs DR, Jackson BJ, Cunningham C. Corn-derived carbohydrate inositol hexaphosphate inhibits Barrett’s adenocarcinoma growth by pro-apoptotic mechanisms. Oncol Rep 2008;19(2):563–6.

    CAS  PubMed  Google Scholar 

  112. Ma Y, Hebert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition 2008;24(10):941–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu J, Wang J, Leng Y, Lv C. Intake of fruit and vegetables and risk of esophageal squamous cell carcinoma: a meta-analysis of observational studies. Int J cancer 2013;133(2):473–85.

    Article  CAS  PubMed  Google Scholar 

  114. Terry P, Lagergren J, Ye W, Nyren O, Wolk A. Antioxidants and cancers of the esophagus and gastric cardia. Int J Cancer 2000;87(5):750–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, B.A., Iqbal, J., Ahmad, R. et al. Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach. Pharmacol. Rep 71, 644–652 (2019). https://doi.org/10.1016/j.pharep.2019.03.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.03.001

Keywords

Navigation