Skip to main content

Advertisement

Log in

Lithium disturbs homeostasis of essential microelements in erythrocytes of rats: Selenium as a protective agent?

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Selenium is an essential element which shows protective properties against diverse harmful factors. Lithium compounds are widely used in medicine, but, in spite of undoubted beneficial effects, treatment with these compounds may lead to severe side effects, including renal, gastrointestinal, neurological, endocrine and metabolic disorders. This study was aimed at evaluating the influence of selenium and/or lithium on lithium, iron, zinc and copper content in rats’ erythrocytes as well as estimate the action of additional selenium on lithium exposure effects.

Methods

The experiment was performed on four groups of rats (six animals each): control — received saline; Li — received 2.7 mg Li/kg b.w. as lithium carbonate; Se — received 0.5 mg Se/kg b.w. as sodium selenite; Se + Li — received simultaneously 0.5 mg Se/kg b.w. and 2.7 mg Li/kg b.w. (sodium selenite and lithium carbonate). The administration was performed for three weeks, once a day by stomach tube, in form of water solutions. In erythrocytes the content of lithium, iron, zinc and copper was determined using flame atomic absorption spectroscopy.

Results

Lithium treatment insignificantly disturbed iron and zinc homeostasis as well as markedly increased lithium accumulation and copper content in rat erythrocytes. Selenium coadministration reversed those effects.

Conclusions

The beneficial effect of selenium on disturbances of studied microelements homeostasis as well as on preventing lithium accumulation in erythrocytes in Li receiving animals allows suggesting that further research on selenium application as an adjuvant in lithium therapy is worth carrying on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayman M.P.. Selenium and human health. Lancet 2012;379(9822):1256–68.

    Article  CAS  PubMed  Google Scholar 

  2. Pesta D, Roden M. The janus head of oxidative stress in metabolic diseases and during physical exercise. Curr Diab Rep 2017;17(6):41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Banni M, Chouchene L, Said K, Kerkeni A, Messaoudi I. Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio. Biometals 2011;24(6):981–92.

    Article  CAS  PubMed  Google Scholar 

  4. Messaoudi I, Hammouda F, El Heni J, Baati T, Saïd K, Kerkeni A. Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 2010;62(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  5. Cao Z, Shao B, Xu F, Liu Y, Li Y, Zhu Y. Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice. Biol Trace Elem Res 2017;180(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  6. Vijaimohan K, Mallika J, Shyamala DC. Chemoprotective effect of sobatum against lithium-induced oxidative damage in rats. J Young Pharm 2010;2(1):68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lazarus M, Orct T, Jurasoviæ J, Blanuša M. The effect of dietary selenium supplementation on cadmium absorption and retention in suckling rats. Biometals 2009;22(6):973–83.

    Article  CAS  PubMed  Google Scholar 

  8. Soudani N, Ben Amara I, Troudi A, Hakim A, Bouaziz H, Ayadi Makni F, et al. Oxidative damage induced by chromium (VI) in rat erythrocytes: protective effect of selenium. J Physiol Biochem 2011;67(4):577–88.

    Article  CAS  PubMed  Google Scholar 

  9. Selamoglu Talas Z, Yilmaz I, Ozdemir I, Ates B, Gok Y, Cetinkaya B. Role of synthesized organoselenium compounds on protection of rat erythrocytes from DMBA-induced oxidative stress. Biol Trace Elem Res 2009;128(2):167–75.

    Article  CAS  Google Scholar 

  10. Puspitasari IM, Yamazaki C, Abdulah R, Putri M, Kameo S, Nakano T, et al. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells. Oncol Lett 2017;13(1):449–54.

    Article  CAS  PubMed  Google Scholar 

  11. Wrobel JK, Power R, Toborek M. Biological activity of selenium: revisited. IUBMB Life 2016;68(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  12. Kieliszek M, Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 2016;21(5) pii: E609.

    Article  PubMed  CAS  Google Scholar 

  13. Baldessarini RJ, Tondo L, Davis P, Pompili M, Goodwin FK, Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord 2006;8(5 Pt 2)625–39 Erratum in: Bipolar Disord 9 (3),2007, 314.

    Article  CAS  PubMed  Google Scholar 

  14. Cipriani A, Hawton K, Stockton S, Geddes JR. Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ 2013;346:f3646.

    Article  PubMed  Google Scholar 

  15. Geddes JR, Miklowitz DJ. Treatment of bipolar disorder. Lancet 2013;381(9878):1672–82.

    Article  CAS  PubMed  Google Scholar 

  16. Lingudu B, Bongi V, Ayyagari M, Venkata SK. Impact of lithium on radioactive iodine therapy for hyperthyroidism. Indian J Endocrinol Metab 2014;18(5):669–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Qi L, Tang Y, He W, Pan H, Jiang W, Wang L, et al. Lithium chloride promotes neuronal differentiation of rat neural stem cells and enhances neural regeneration in Parkinson’s disease model. Cytotechnology 2017;69(2):277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Aggarwal P, Li X, Oakman C, Wang Z, Rodriguez R. The role of lithium carbonate and lithium citrate in regulating urinary citrate level and preventing nephrolithiasis. Int J Biomed Sci 2009;5(3):215–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Song H, Zhong L, Yang R, Yang XQ, Jiang KL, et al. Lithium chloride promotes apoptosis in human leukemia NB4cells by inhibiting glycogen synthase kinase-3 beta. Int J Med Sci 2015;12(10):805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM, Geddes JR. Lithium toxicity profile: a systematic review and meta-analysis. Lancet 2012;379(9817):721–8.

    Article  CAS  PubMed  Google Scholar 

  21. Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disord 2016;4(1):27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Toplan S, Dariyerli N, Ozdemir S, Ozcelik D, Zengin EU, Akyolcu MC. Lithium-induced hypothyroidism: oxidative stress and osmotic fragility status in rats. Biol Trace Elem Res 2013;152(3):373–8.

    Article  CAS  PubMed  Google Scholar 

  23. Weiner ID, Leader JP, Bedford JJ, Verlander JW, Ellis G, Kalita P, et al. Effects of chronic lithium administration on renal acid excretion in humans and rats. Physiol Rep 2014;2(12):e12242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Camus M, Henneré G, Baron G, Peytavin G, Massias L, Mentré F, et al. Comparison of lithium concentrations in red blood cells and plasma in samples collected for TDM, acute toxicity, or acute-on-chronic toxicity. Eur J Clin Pharmacol 2003;59(8–9):583–7.

    Article  CAS  PubMed  Google Scholar 

  25. El Balkhi S, Megarbane B, Poupon J, Baud FJ, Galliot-Guilley M. Lithium poisoning: is determination of the red blood cell lithium concentration useful? Clin Toxicol (Phila) 2009;47(1):8–13.

    Article  CAS  Google Scholar 

  26. Malhotra A, Dhawan DK. Zinc improves antioxidative enzymes in red blood cells and hematology in lithium-treated rats. Nutr Res 2008;28(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  27. Singh N, Sharpley AL, Emir UE, Masaki C, Herzallah MM, Gluck MA, et al. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology 2016;41(7):1768–78.

    Article  CAS  PubMed  Google Scholar 

  28. Lajin B, Kuehnelt D, Francesconi KA. Exploring the urinary selenometabolome following a multi-phase selenite administration regimen in humans. Metallomics 2016;8(8):774–81.

    Article  CAS  PubMed  Google Scholar 

  29. Nicolay JP, Gatz S, Lang F, Lang UE. Lithium-induced suicidal erythrocyte death. J Psychopharmacol 2010;24(10):1533–9.

    Article  CAS  PubMed  Google Scholar 

  30. Suwalsky M, Fierro P, Villena F, Sotomayor CP. Effects of lithium on the human erythrocyte membrane and molecular models. Biophys Chem 2007;129(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  31. Eze JI, Ayogu LC, Abonyi FO, Eze UU. The beneficial effect of dietary zinc supplementation on anaemia and immunosuppression in Trypanosoma brucei infected rats. Exp Parasitol 2015;154:87–92.

    Article  CAS  PubMed  Google Scholar 

  32. Kędzierska K, Bober J, Ciechanowski K, Gołembiewska E, Kwiatkowska E, Noceń I, et al. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension. Biol Trace Elem Res 2005;107(1):21–32.

    Article  PubMed  Google Scholar 

  33. Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: a preliminary study. Res Vet Sci 2012;93(1):275–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kiełczykowska M, Musik I, Pasternak K. Relationships between silicon content and glutathione peroxidase activity in tissues of rats receiving lithium in drinking water. BioMetals 2008;21(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  35. Musik I, Hordyjewska A, Boguszewska-Czubara A, Pasternak K. Possible new organoselenium supplement–evaluation of its influence on the kidneys in comparison with inorganic sodium selenite. Pharmacol Rep 2009;61(5):885–91.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez JC, Perez X, Labad J, Esteve F, Manez R, Javierre C. Higher requirements of dialysis in severe lithium intoxication. Hemodial Int 2012;16(3):407–13.

    Article  PubMed  Google Scholar 

  37. Hanak AS, Chevillard L, El Balkhi S, Riséde P, Peoc’h K, Mégarbane B. Study of blood and brain lithium pharmacokinetics in the rat according to three different modalities of poisoning. Toxicol Sci 2015;143(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  38. Dashti-Khavidaki S, Ahmadi-Abhari SA, Ghaeli P, Farsam H, Dehpour AR, Mahdavi-Mazdeh M, et al. Relationship between erythrocyte lithium concentration and renal concentrating capacity. J Clin Pharm Ther 2003;28(6):451–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kaluza J, Madej D. Adverse effect after cessation of rats’ unjustified iron or iron and zinc supplementation on hematological parameters but not ferritin concentration. Clin Nutr 2015;34(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yanagisawa H, Miyakoshi Y, Kobayashi K, Sakae K, Kawasaki I, Suzuki Y, et al. Long-term intake of a high zinc diet causes iron deficiency anemia accompanied by reticulocytosis and extra-medullary erythropoiesis. Toxicol Lett 2009;191(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  41. Musik I, Kocot J, Kiełczykowska M. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: a pilot study. Pharmacol Rep 2015;67(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  42. Taysi S, Cikman O, Kaya A, Demircan B, Gumustekin K, Yilmaz A, et al. Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol Trace Elem Res 2008;123(1–3):161–7.

    Article  CAS  PubMed  Google Scholar 

  43. Tariba B, Živković T, Gajski G, Gerić M, Gluščić V, Garaj-Vrhovac V, et al. In vitro effects of simultaneous exposure to platinum and cadmium on the activity of antioxidant enzymes and DNA damage and potential protective effects of selenium and zinc. Drug Chem Toxicol 2017;40(2):228–34.

    Article  CAS  PubMed  Google Scholar 

  44. Türkan H, Bukan N, Sayal A, Aydin A, Bukan MH. Effects of halothane, enflurane, and isoflurane on plasma and erythrocyte antioxidant enzymes and trace elements. Biol Trace Elem Res 2004;102(1–3):105–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kocot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiełczykowska, M., Kopciał, E., Kocot, J. et al. Lithium disturbs homeostasis of essential microelements in erythrocytes of rats: Selenium as a protective agent?. Pharmacol. Rep 70, 1168–1172 (2018). https://doi.org/10.1016/j.pharep.2018.05.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.05.003

Keywords

Navigation