Skip to main content

Advertisement

Log in

Prophylactic effect of rosmarinic acid on tracheal responsiveness, white blood cell count and oxidative stress markers in lung lavage of sensitized rats

  • Original Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Rosmarinic acid (RA) as an active component of several medicinal plants, has shown anti-inflammatory and anti-oxidant effects. In this study, the effect of RA on tracheal responsiveness (TR), lung inflammatory cells, oxidant biomarkers in sensitized rats were evaluated.

Methods

TR to methacholine and ovalbumin (OVA) as well as total and differential white blood cell (WBC) count and levels of nitrogen dioxide, nitrate, malondialdehyde, thiol, superoxide dismutase, and catalase in bronchoalveolar lavage fluid were measured in control (group C) rats, sensitized animals to OVA and given drinking water alone (group S), S groups receiving drinking water containing three concentrations of RA (0.125, 0.250 and 0.500 mg/mL) and dexamethasone (1.25 μg/mL), (n = 6 in each group).

Results

Increased TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils and levels of oxidant biomarkers but decreased other measured parameters were observed in group S compared to group C. Percentages of lymphocytes and antioxidant biomarkers were significantly increased but other measured parameters were significantly decreased in S group treated with dexamethasone and in rats treated with the two higher concentrations of RA compared to S group. The effect of RA medium concentration on percentage of eosinophils and RA high concentration on total WBC count and percentages of eosinophils and lymphocytes, were significantly higher than those of dexamethasone.

Conclusion

These results showed the concentration-dependent effect of RA on tracheal responses, lung inflammatory cells and oxidant-antioxidant parameters which was comparable to that of dexamethasone at used concentrations in sensitized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padrid P, Snook S, Finucane T, Shiue P, Cozzi P, Solway J, et al. Persistent airway hyperresponsiveness and histologic alteration after chronic antigen challenge in cats. Am J Respir Crit Care Med 1995;151(1):184–93.

    Article  CAS  PubMed  Google Scholar 

  2. Louis R, Lau LC, Bron AO, Roldaan AC, Radermecker M, Djukanovic R. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 2000;161(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly CA, Ward C, Stenton SC, Bird G, Hendrick DJ, Walters EH. Numbers and activity of cells obtained at bronchoalveolar lavage in asthma, and their relationship to airway responsiveness. Thorax 1998;43(9):684–92.

    Article  Google Scholar 

  4. Hogan MB, Weissman DN, Hubbs AF, Gibson LF, Piktel D, Landreth KS. Regulation of eosinophilopoiesis in a murine model of asthma. J Immunol 2003;171(5):2644–51.

    Article  CAS  PubMed  Google Scholar 

  5. Boskabady MH, Keyhanmanesh R, Khamneh S, Ebrahimi MA. The effect of Nigella sativa extract on tracheal responsiveness and lung inflammation in ovalbumin sensitized guinea pigs. Clinics 2011;66(5):879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luksza AR, Jones DK. Comparison of whole-blood eosinophil counts in extrinsic asthmatics with acute and chronic asthma. Br Med J 1982;285(6350):1229–31.

    Article  CAS  Google Scholar 

  7. Boskabady MH, Snashall PD. Bronchial responsiveness to beta-adrenergic stimulation and enhanced beta-blockade in asthma. Respirology 2000;5(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chitano P, Wang L, Mason SN, Auten Richard L, Potts EN, et al. Airway smooth muscle relaxation is impaired in mice lacking the p47phox subunit of NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 2008;294(1):139–48.

    Article  Google Scholar 

  9. Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organ J 2011;4(10):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Psotová J, Kolár M, Sousek J, Svagera Z, Vicar J, Ulrichová J. Biological activities of Prunella vulgaris extract. Phytother Res 2003;17(9):1082–7.

    Article  PubMed  Google Scholar 

  11. Mehni F, Sharififar F, Ansari M. Antioxidant activity and rosmarinic acid content of ten medicinal plants. Res Pharmac Sci 2012;7(5):780.

    Google Scholar 

  12. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 2007;51(9):3367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang Z, Nie H, Xu Y, Peng J, Zeng Y, Wei Y, et al. Therapeutic effects of rosmarinic acid on airway responses in a murine model of asthma. Int Immunopharmacol 2016;41(Epub):90–7.

    Article  CAS  PubMed  Google Scholar 

  14. Salmon M, Walsh DA, Huang T, Barnes PJ, Leonard TB, Hay DW, et al. Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br J Pharmacol 1999;127(5):1151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shakeri F, Soukhtanloo M, Boskabady MH. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iran J Basic Med Sci 2017;20(2):155–65.

    PubMed  PubMed Central  Google Scholar 

  16. Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell 2011;43:392–7.

    Article  CAS  PubMed  Google Scholar 

  17. Boskabady MH, Ziaei T. Effect of ascorbic acid on airway responsiveness in ovalbumin sensitized guinea pigs. Respirology 2003;8(4):473–8.

    Article  PubMed  Google Scholar 

  18. Keyhanmanesh R, Boskabady MH, Khamneh S, Ebrahimi MA. The effect of thymoquinone, the main constituent of Nigella sativa on tracheal responsiveness and WBC count in lung lavage of sensitized guinea-pigs. Planta Med 2010;76(3):218–22.

    Article  CAS  PubMed  Google Scholar 

  19. Hosseinzadeh H, Safranal Sadeghnia HR. A constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Sci 2005;8(3):394–9.

    CAS  Google Scholar 

  20. Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 1998;35(3):184–8.

    CAS  PubMed  Google Scholar 

  21. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195(1):133–40.

    CAS  PubMed  Google Scholar 

  22. Yousefniapasha Y, Jorsaraei G, Gholinezhadchari M, Mahjoub S, Hajiahmadi M, Farsi M. Nitric oxide levels and total antioxidant capacity in the seminal plasma of infertile smoking men. Cell J 2015;17(1):129–36.

    PubMed  PubMed Central  Google Scholar 

  23. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Bio Med 1990;9(6):515–40.

    Article  CAS  Google Scholar 

  24. Hall ED, Andrus PK. Measurement of oxygen radicals and lipid peroxidation in neural tissues. Curr Protoc Neurosci 2009;17(1):1–51.

    Google Scholar 

  25. Hamid Q, Tulic’ MK, Liu MC, Moqbel R. Inflammatory cells in asthma: mechanisms and implications for therapy. J Allergy Clin Immunol 2003;111(Suppl. 1):S5–S12.

    Article  CAS  PubMed  Google Scholar 

  26. Cho YS, Moon HB. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res 2010;2(3):183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Busse WW. Inflammation in asthma: the cornerstone of the disease and target of therapy. J Allergy Clin Immunol 1998;102(4 Pt 2):S17–22.

    Article  CAS  PubMed  Google Scholar 

  28. Liang Z, Xu Y, Wen X, Nie H, Hu T, Yang X, et al. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 2016;21(6):769.

    Article  PubMed Central  Google Scholar 

  29. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 2004;25(4):549–57.

    Article  CAS  PubMed  Google Scholar 

  30. Chu X, Ci X, He J, Jiang L, Wei M, Cao Q, et al. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 2012;17(3):3586–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee KG, Shibamoti T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J Agric Food Chem 2002;50(17):4947–52.

    Article  CAS  PubMed  Google Scholar 

  32. Domitrović R, Potočnjak I, Crnčević-Orlić Z, Škoda M. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice. Food Chem Toxicol 2014;321-8.

    Article  PubMed  Google Scholar 

  33. Tang XY, Yu HP, Deng HJ, Chen X, Fan HZ, Gong YX, et al. Pathogenic mechanism of CD8(+)CD28(−)Tcell and the effect of dexamethasone in asthmatic mouse. J Chin Med Assoc 2011;91(26):1861–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Boskabady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhar, N., Moghimi, A. & Boskabady, M.H. Prophylactic effect of rosmarinic acid on tracheal responsiveness, white blood cell count and oxidative stress markers in lung lavage of sensitized rats. Pharmacol. Rep 70, 119–125 (2018). https://doi.org/10.1016/j.pharep.2017.08.010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.08.010

Keywords

Navigation