Skip to main content
Log in

Anticonvulsant activities of α-asaronol ((E)-3′-hydroxyasarone), an active constituent derived from α-asarone

  • Original Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Epilepsy is one of chronic neurological disorders that affects 0.5–1.0% of the world’s population during their lifetime. There is a still significant need to develop novel anticonvulsant drugs that possess superior efficacy, broad spectrum of activities and good safety profile.

Methods

α-Asaronol and two current antiseizure drugs (α-asarone and carbamazepine (CBZ)) were assessed by in vivo anticonvulsant screening with the three most employed standard animal seizure models, including maximal electroshock seizure (MES), subcutaneous injection-pentylenetetrazole (PTZ)-induced seizures and 3-mercaptopropionic acid (3-MP)-induced seizures in mice. Considering drug safety evaluation, acute neurotoxicity was assessed with minimal motor impairment screening determined in the rotarod test, and acute toxicity was also detected in mice.

Results

In our results, α-asaronol displayed a broad spectrum of anticonvulsant activity (ACA) and showed better protective indexes (PI = 11.11 in MES, PI = 8.68 in PTZ) and lower acute toxicity (LD50 = 2940 mg/kg) than its metabolic parent compound (α-asarone). Additionally, α-asaronol displayed a prominent anticonvulsant profile with ED50 values of 62.02 mg/kg in the MES and 79.45 mg/kg in the sc-PTZ screen as compared with stiripentol of ED50 of 240 mg/kg and 115 mg/kg in the relevant test, respectively.

Conclusion

The results of the present study revealed α-asaronol can be developed as a novel molecular in the search for safer and efficient anticonvulsants having neuroprotective effects as well as low toxicity. Meanwhile, the results also suggested that α-asaronol has great potential to develop into another new aromatic allylic alcohols type anticonvulsant drug for add-on therapy of Dravet’s syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 2006;129:18–35.

    Article  PubMed  Google Scholar 

  2. Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015;52:308–18.

    Article  PubMed  Google Scholar 

  3. Spinella M. Herbal medicines and epilepsy: the potential for benefit and adverse effects. Epilepsy Behav 2001;2:524–32.

    Article  PubMed  Google Scholar 

  4. Chinese pharmacopoeia commission pharmacopoeia of the People’s Republic of China, vol. 1. Beijing: Chemical Industry Press; 2015.

  5. Gu Q, Du H, Ma C, Fotis H, Wu B, Huang C, et al. Effects of α-asarone on the glutamate transporter EAAC1 in Xenopus oocytes. Planta Med 2010;76:595–8, doi:http://dx.doi.org/10.1055/s-0029-1240613.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q-X, Miao J-K, Li C, Li X-W, Wu X-M, Zhang X. Anticonvulsant activity of acute and chronic treatment with a-asarone from Acorus gramineus in seizure models. Biol Pharm Bull 2013;36:23–30, doi:http://dx.doi.org/10.1248/bpb.b12-00376.

    Article  PubMed  Google Scholar 

  7. Ni G, Yu D-Q. Chemical constituents from rhizomes of Acorus tatarinowii. Zhongguo Zhong Yao Za Zhi 2013;38:569–73.

    CAS  PubMed  Google Scholar 

  8. Vohora SB, Shah SA, Dandiya PC. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol 1990;28:53–62.

    Article  CAS  PubMed  Google Scholar 

  9. Huang C, Li W-G, Zhang X-B, Wang L, Xu T-L, Wu D, et al. Alpha-asarone from Acorus gramineus alleviates epilepsy by modulating A-type GABA receptors. Neuropharmacology 2013;65:1–11, doi:http://dx.doi.org/10.1016/j.neuropharm.2012.09.001.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z-J, Levinson SR, Sun L, Heinbockel T. Identification of both GABAA receptors and voltageactivated Na+ channels as molecular targets of anticonvulsant α-asarone. Front Pharmacol 2014;5:1–9, doi:http://dx.doi.org/10.3389/fphar.2014.00040.

    Google Scholar 

  11. Limon ID, Mendieta L, Diaz A, Chamorro G, Espinosa B, Zenteno E, et al. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-b(25-35). Neurosci Lett 2009;453:98–103, doi:http://dx.doi.org/10.1016/j.neulet.2009.02.011.

    Article  CAS  PubMed  Google Scholar 

  12. Marczewska J, Drozd E, Anuszewska E, Chilmonczyk Z, Lozowicka B. Assessment of the genotoxic activity of α-asarone and its derivatives in the comet assay. Acta Pol Pharm 2013;70:349–54.

    CAS  PubMed  Google Scholar 

  13. Chak IM, Sharma JN. Effect of asarone on experimentally induced conflict neurosis in rats. Indian J Exp Biol 1965;3:252–4.

    CAS  PubMed  Google Scholar 

  14. Morales-Ramirez P, Madrigal-Bujaidar E, Mercader-Martinez J, Cassani M, Gonzalez G, Chamorro-Cevallos G, et al. Sister-chromatid exchange induction produced by in vivo and in vitro exposure to alpha-asarone. Mutat Res Genet Toxicol Test 1992;279:269–73, doi:http://dx.doi.org/10.1016/0165-1218(92)90243-S.

    Article  CAS  Google Scholar 

  15. Chamorro G, Salazar M, Salazar S, Mendoza T. Pharmacology and toxicology of Guatteria gaumeri and alpha-asarone. Rev Invest Clin 1993;45:597–604.

    CAS  PubMed  Google Scholar 

  16. Díaz F, Muñoz H, Labarrios F, Chamorro G, Salazar M, Morelos ME, et al. Synthesis and hypolipidemic activity of some α-asarone analogs. Med Chem Res 1993;3:101–9.

    Google Scholar 

  17. Chamorro G, Garduno L, Martinez E, Madrigal E, Tamariz J, Salazar M. Dominant lethal study of α-asarone in male mice. Toxicol Lett 1998;99:71–7, doi:http://dx.doi.org/10.1016/S0378-4274(98)00041-1.

    Article  CAS  PubMed  Google Scholar 

  18. Salazar M, Salazar S, Ulloa V, Mendoza T, Pages N, Chamoro G. Teratogenic action of alpha-asarone in the mouse. J Toxicol Clin Exp 1992;12:149–54.

    CAS  PubMed  Google Scholar 

  19. Tsai RS, Carrupt PA, Testa B, Caldwell J. Structure-genotoxicity relationships of allylbenzenes and propenylbenzenes: a quantum chemical study. Chem Res Toxicol 1994;7:73–6, doi:http://dx.doi.org/10.1021/tx00037a011.

    Article  CAS  PubMed  Google Scholar 

  20. Bertram B, Hemm I, Tang W. Mutagenic and carcinogenic constituents of medicinal herbs used in Europe or in the USA. Pharmazie 2001;56:99–120.

    CAS  PubMed  Google Scholar 

  21. Cartus AT, Schrenk D. Metabolism of the carcinogen alpha-asarone in liver microsomes. Food Chem Toxicol 2016;87:103–12, doi:http://dx.doi.org/10.1016/j.fct.2015.11.021.

    Article  CAS  PubMed  Google Scholar 

  22. Richy F, Schacht E, Bruyere O, Ethgen O, Gourlay M, Reginster J-Y. Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int 2005;76:176–86, doi:http://dx.doi.org/10.1007/s00223-004-0005-4.

    Article  CAS  PubMed  Google Scholar 

  23. Ringe JD, Faber H, Fahramand P, Schacht E. Alfacalcidol versus plain vitamin D in the treatment of glucocorticoid/inflammation-induced osteoporosis. J Rheumatol Suppl 2005;76:33–40.

    CAS  PubMed  Google Scholar 

  24. Richy F, Dukas L, Schacht E. Differential effects of D-hormone analogs and native vitamin D on the risk of falls: a comparative meta-analysis. Calcif Tissue Int 2008;82:102–7, doi:http://dx.doi.org/10.1007/s00223-008-9102-0.

    Article  CAS  PubMed  Google Scholar 

  25. Kim T, Mirafzal GA, Liu J, Bauld NL. Is hole transfer involved in metalloporphyrin-catalyzed epoxidation? J Am Chem Soc 1993;115:7653–64, doi:http://dx.doi.org/10.1021/ja00070a009.

    Article  CAS  Google Scholar 

  26. Fischer W, Bodewei R, Satzinger G. Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models. Naunyn-Schmiedeberg’s Arch Pharmacol 1992;346:442–52, doi:http://dx.doi.org/10.1007/BF00171088.

    Article  CAS  Google Scholar 

  27. Bruce RD. An up-and-down procedure for acute toxicity testing. Fundam Appl Toxicol 1985;5:151–7, doi:http://dx.doi.org/10.1016/0272-0590(85)90059-4.

    Article  CAS  PubMed  Google Scholar 

  28. Porter RJ, Cereghino JJ, Gladding GD, Hessie BJ, Kupferberg HJ, Scoville B, et al. Antiepileptic drug development program. Cleve Clin Q 1984;51:293–305.

    Article  CAS  PubMed  Google Scholar 

  29. Morpurgo C. A new design for the screening of CNS-active drugs in mice. A multi-dimensional observation procedure and the study of pharmacological interactions. Arzneimittelforschung 1971;21:1727–34.

    CAS  PubMed  Google Scholar 

  30. Milne GWA. Drugs: synonyms & properties. Surrey: Ashgate Publ Co.; 2000.

    Google Scholar 

  31. Hasheminejad G, Caldwell J. Genotoxicity of the alkenylbenzenes α- and β-asarone, myristicin and elemicin as determined by the UDS assay in cultured rat hepatocytes. Food Chem Toxicol 1994;32:223–31, doi:http://dx.doi.org/10.1016/0278-6915(94)90194-5.

    Article  CAS  PubMed  Google Scholar 

  32. Jezequel SG. General nervous system penetration of drugs: importance of phisicochemical properties. London: Taylor& Francis;1992.

    Google Scholar 

  33. Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA-receptor channels. Epilepsia 2006;47:704–16, doi:http://dx.doi.org/10.1111/j.1528-1167.2006.00497.x.

    Article  CAS  PubMed  Google Scholar 

  34. Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 2015;347:1362–7, doi:http://dx.doi.org/10.1126/science.aaa1299.

    Article  CAS  PubMed  Google Scholar 

  35. Levy RH, Lin HS, Blehaut HM, Tor JA. Pharmacokinetics of stiripentol in normal man: evidence of nonlinearity. J Clin Pharmacol 1983;23:523–33, doi:http://dx.doi.org/10.1002/j.1552-4604.1983.tb01799.x.

    Article  CAS  PubMed  Google Scholar 

  36. Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA. Stiripentol kinetics in epilepsy: nonlinearity and interactions. Clin Pharmacol Ther 1984;36:661–9.

    Article  CAS  PubMed  Google Scholar 

  37. Aboul-Enein MN, El-Azzouny AA, Attia MI, Maklad YA, Amin KM, Abdel-Rehim M, et al. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur J Med Chem 2012;47:360–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Bai, Y., Zeng, M. et al. Anticonvulsant activities of α-asaronol ((E)-3′-hydroxyasarone), an active constituent derived from α-asarone. Pharmacol. Rep 70, 69–74 (2018). https://doi.org/10.1016/j.pharep.2017.08.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.08.004

Keywords

Navigation