Skip to main content

Advertisement

Log in

Histone deacetylases (HDACs) as therapeutic target for depressive disorders

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) represents approximately 40% of the disability caused by mental illnesses globally. The poorly understood pathophysiology and limited efficiency of pharmacological treatment (based primarily on the principles of the monoaminergic hypothesis) make depression a serious medical, public and socio-economical problem. An increasing number of studies suggest that epigenetic modifications (alterations in gene expression that are not due to changes in DNA sequence) in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual’s genetic constitution to affect risk of mental disorders. Accordingly, chromatin-based epigenetic regulation seems to be a promising direction for the development of new, more effective antidepressant drugs. Recently, several inhibitors of histone deacetylases (HDAC) have been extensively studied in the context of antidepressant action. So far, none of them has been used to treat depression in humans due to the low selectivity for specific HDAC isoforms, and consequently, a risk of serious adverse events. In this review, we focus on the HDAC inhibitors (HDACi) with the greatest antidepressant efficacy and their activity in the preclinical studies. Moreover, we discuss their potential therapeutic usefulness in depression and the main limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlington V, editor. American Psychiatric Association: Desk Reference to the Diagnostic Criteria From DSM-5. American Psychiatric Association; 2013.

  2. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013;382:1575–86.

    Article  PubMed  Google Scholar 

  3. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 2013;10:e1001547.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marcus M, Yasamy MT, van Ommeren MCD. A Global Public Health Concern. 2012.

  5. Duman RS. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress Anxiety 2014;31:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lesse A, Rether K, Gröger N, Braun K, Bock J. Chronic postnatal stress induces depressive-like behavior in male mice and programs second-hit stress-induced gene expression patterns of OxtR and AvpR1a in adulthood. Mol Neurobiol 2016, doi:http://dx.doi.org/10.1007/s12035-016-0043-8.

  7. Nasca C, Zelli D, Bigio B, Piccinin S, Scaccianoce S, Nisticò RMB. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci U S A 2015;112:14960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, et al. SIRT1 mediates depression-like behaviors in the nucleus accumbens. J Neurosci 2016;36:8441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heller EA, Hamilton PJ, Burek DD, Lombroso SI, Peña CJ, Neve RL, et al. Targeted epigenetic remodeling of the cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci 2016;36:4690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Nhu LH, et al. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016;105:388–97.

    Article  CAS  PubMed  Google Scholar 

  11. Liu D, Qiu H-M, Fei H-Z, Hu X-Y, Xia H-J, Wang L-J, et al. Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp Biol Med (Maywood) 2014;239:330–6.

    Article  CAS  Google Scholar 

  12. Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar LA. Epigenetic modifications of major depressive disorder. Int J Mol Sci 201617: pii: E1279.

    Article  PubMed  CAS  Google Scholar 

  13. Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 2014;6:4273–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Plagg B, Ehrlich D, Kniewallner KM, Marksteiner J, Humpel C. Increased acetylation of histone H4 at lysine 12 (H4K12) in monocytes of transgenic alzheimer’s mice and in human patients. Curr Alzheimer Res 2015;12:752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sen N. Epigenetic regulation of memory by acetylation and methylation of chromatin: implications in neurological disorders, aging, and addiction. Neuromolecular Med 2015;17:97–110.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuji M, Miyagawa K, Takeda H. Epigenetic regulation of resistance to emotional stress: possible involvement of 5-HT1A receptor-mediated histone acetylation. J Pharmacol Sci 2014;125:347–54.

    Article  CAS  PubMed  Google Scholar 

  17. Ferland CL, Schrader LA. Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins. Neuroscience 2011;174:104–14.

    Article  CAS  PubMed  Google Scholar 

  18. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014;6:a018713.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009;10:295–304.

    Article  CAS  PubMed  Google Scholar 

  21. Han A, Sung YB, Chung SY, K.M. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology 2014;81:292–302.

    Article  CAS  PubMed  Google Scholar 

  22. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519–25.

    Article  CAS  PubMed  Google Scholar 

  23. Das Gupta K, Shakespear MR, Iyer A, Fairlie DP, Sweet MJ. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Trans Immunol 2016;5:e62.

    Article  CAS  Google Scholar 

  24. Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2016;72:60–72.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang H, Shang Y-P, Chen H-Y, Li J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol Res 2016;47:149–59.

    Article  PubMed  CAS  Google Scholar 

  26. Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med 2016;52:1–11.

    Article  CAS  Google Scholar 

  27. Wang Q, Rosa BA, Nare B, Powell K, Valente S, Rotili D, et al. Targeting lysine deacetylases (KDACs) in parasites. PLoS Negl Trop Dis 2015;9:e0004026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gundersen BB, Blendy JA. Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology 2009;57:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Covington HE, Vialou VF, LaPlant Q, Ohnishi YN, Nestler EJ. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci Lett 2011;493:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Covington HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 2009;29:11451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarkar A, Chachra P, Kennedy P, Pena CJ, Desouza LA, Nestler EJ, et al. Hippocampal HDAC4 contributes to postnatal fluoxetine-evoked depression-like behavior. Neuropsychopharmacology 2014;39:2221–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamawaki Y, Fuchikami M, Morinobu S, Segawa M, Matsumoto T, Yamawaki S. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J Biol Psychiatry 2012;13:458–67.

    Article  PubMed  Google Scholar 

  33. Lin H, Geng X, Dang W, Wu B, Dai Z, Li Y, et al. Molecular mechanisms associated with the antidepressant effects of the class I histone deacetylase inhibitor MS-275 in the rat ventrolateral orbital cortex. Brain Res 2012;1447:119–25.

    Article  CAS  PubMed  Google Scholar 

  34. Tambaro FP, Dell’aversana C, Carafa V, Nebbioso A, Radic B, Ferrara F. Histone deacetylase inhibitors: clinical implications for hematological malignancies. Clin Epigenetics 2010;1–2:25–44, doi:http://dx.doi.org/10.1007/s13148-010-0006-2.

    Article  CAS  Google Scholar 

  35. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795–800.

    Article  CAS  PubMed  Google Scholar 

  37. Micelli C, Rastelli G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 2015;20:718–35.

    Article  CAS  PubMed  Google Scholar 

  38. Jaworska J, Ziemka-Nalecz M, Zalewska T. Histone deacetylases 1 and 2 are required for brain development. Int J Dev Biol 2015;59:171–7.

    Article  CAS  PubMed  Google Scholar 

  39. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 2011;29:255–65.

    Article  CAS  PubMed  Google Scholar 

  40. Khan DH, He S, Yu J, Winter S, Cao W, Seiser C, et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J Biol Chem 2013;288:16518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J Neurochem 2010;115:806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  43. Lai X, Li JZ, Lian Z, Niu BL, Chen Y, Liao WY, et al. Advantages of promoting interleukin-10 by silence of histone deacetylase 11 in inducing tolerance in orthotopic liver transplantation in rats. Transplant Proc 2011;43:2728–32.

    Article  CAS  PubMed  Google Scholar 

  44. Lian Z, Xu Y, Wang X, Gong J, Liu Z. Suppression of histone deacetylase 11 promotes expression of IL-10 in Kupffer cells and induces tolerance following orthotopic liver transplantation in rats. J Surg Res 2012;174:359–68.

    Article  CAS  PubMed  Google Scholar 

  45. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 2009;10:92–100.

    Article  CAS  PubMed  Google Scholar 

  46. Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood 2011;117:2910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. ABBV Cell Cycle 2010;9:4351–63.

    Article  CAS  Google Scholar 

  48. Mottamal M, Zheng S, Huang T, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2016;205(20):3898–941.

    Google Scholar 

  49. Inkster B, Strijbis EMM, Vounou M, Kappos L, Radue EW, Matthews PM, et al. Histone deacetylase gene variants predict brain volume changes in multiple sclerosis. Neurobiol Aging 2013;34:238–47.

    Article  CAS  PubMed  Google Scholar 

  50. Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 2013;11:e1001717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 2009;297:F729–39.

    Article  CAS  PubMed  Google Scholar 

  52. Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med 2012;18:934–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E. Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol 2008;59(Suppl 9):201–12.

    PubMed  Google Scholar 

  54. Wang WH, Cheng LC, Pan FY, Xue B, Wang DY, Chen Z, et al. Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. Anat Rec (Hoboken) 2011;294:1025–34.

    Article  CAS  Google Scholar 

  55. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  56. Menke A, Binder EB. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin Neurosci 2014;16:395–404.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Abe N, Uchida S, Otsuki K, Hobara T, Yamagata H, Higuchi F, et al. Altered sirtuin deacetylase gene expression in patients with a mood disorder. J Psychiatr Res 2011;45:1106–12.

    Article  PubMed  Google Scholar 

  58. Hobara T, Uchida S, Otsuki K, Matsubara T, Funato H, Matsuo K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res 2010;44:263–70.

    Article  PubMed  Google Scholar 

  59. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Dis 2010;126:167–73.

    Article  CAS  PubMed  Google Scholar 

  60. MacDonald JL, Roskams AJ. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn 2008;237:2256–67.

    Article  PubMed  Google Scholar 

  61. Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013;47:1204–14.

    Article  PubMed  Google Scholar 

  62. Renthal W, Maze I, Krishnan V, Covington HE, Xiao G, Kumar A, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007;56:517–29.

    Article  CAS  PubMed  Google Scholar 

  63. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011;69:359–72.

    Article  CAS  PubMed  Google Scholar 

  64. Choi M, Lee SH, Wang SE, Ko SY, Song M, Choi JS, et al. Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc Nat Acad Sci USA 2015;112:15755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 2010;77:126–35.

    Article  CAS  PubMed  Google Scholar 

  66. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007;1:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hwang JY, Aromolaran KA, Z.R. Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology 2013;38:167–82.

    Article  CAS  PubMed  Google Scholar 

  69. Jessberger S, Nakashima K, Clemenson GD, Mejia E, Mathews E, Ure K, et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 2007;27:5967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009;32:591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Durham B. Novel histone deacetylase (HDAC) inhibitors with improved selectivity for HDAC2 and 3 protect against neural cell death. Biosci Horiz 2012;5:1–7.

    Article  CAS  Google Scholar 

  72. Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Trans Neurol 2015;2:79–101.

    Article  CAS  Google Scholar 

  73. Meylan EM, Halfon O, Magistretti PJ, Cardinaux J-R. The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology 2016;107:111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiu C-T, Wang Z, Hunsberger JG, Chuang D-M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013;65:105–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin H, Geng X, Dang W, Wu B, Dai Z, Li Y, et al. Molecular mechanisms associated with the antidepressant effects of the class I histone deacetylase inhibitor MS-275 in the rat ventrolateral orbital cortex. Brain Res 2012;1447:119–25.

    Article  CAS  PubMed  Google Scholar 

  76. Penney J, Tsai LH. Histone deacetylases in memory and cognition. Sci Signal 2014;7:re12.

    Article  PubMed  CAS  Google Scholar 

  77. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003;133:2485S–93S.

    Article  CAS  PubMed  Google Scholar 

  78. Berni Canani R, Di Costanzo MLL. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenet 2012;4:4.

    Article  CAS  Google Scholar 

  79. Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62:55–64.

    Article  CAS  PubMed  Google Scholar 

  80. Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 2004;23:6304–15.

    Article  CAS  PubMed  Google Scholar 

  81. Monneret C. Histone deacetylase inhibitors. Eur J Med Chem 2005;40:1–13.

    Article  CAS  PubMed  Google Scholar 

  82. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004;141:874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamer HM, Jonkers DM, Vanhoutvin SA, Troost FJ, Rijkers G, de Bruïne A, et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin Nutr 2010;29:738–44.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao Y, Xing B, Dang Y, Qu C, Zhu F, Yan C. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS One 2013;8:e52698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu H-M, Yang J-X, Liu D, Fei H-Z, Hu X-Y, Zhou Q-X. Antidepressive effect of sodium valproate involving suppression of corticotropin-releasing factor expression and elevation of BDNF expression in rats exposed to chronic unpredicted stress. Neuroreport 2014;25:205–10.

    Article  CAS  PubMed  Google Scholar 

  86. Silva MFB, Aires CCP, Luis PBM, Ruiter JPN, I.Jlst L, Duran M, et al. Tavares de Almeida I: Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis 2008;31:205–16.

    Article  CAS  PubMed  Google Scholar 

  87. Owens MJ, Nemeroff CB. Pharmacology of valproate. Psychopharmacol Bull 2003;37(Suppl 2):17–24.

    PubMed  Google Scholar 

  88. Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994;17:208–14.

    Article  CAS  PubMed  Google Scholar 

  89. Sztajnkrycer MD. Valproic acid toxicity: overview and management. J Toxicol ClinToxicol 2002;40:789–801.

    CAS  Google Scholar 

  90. Nakashima H, Oniki K, Nishimura M, Ogusu N, Shimomasuda M, Ono T, et al. Determination of the optimal concentration of valproic acid in patients with epilepsy: a population pharmacokinetic-Pharmacodynamic analysis. PLoS One 2015;10:e0141266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang Y-L, Hennig KM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One 2013;8:e71323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci U S A 2013;110:4804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ferland CL, Hawley WR, Puckett RE, Wineberg K, Lubin FD, Dohanich GP, et al. Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol Psychiatry 2013;74:927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, et al. WY. hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry 2016;80:815–26.

    Article  CAS  PubMed  Google Scholar 

  95. Liu R, Dang W, Du Y, Zhou Q, Jiao K, Liu Z. SIRT2 is involved in the modulation of depressive behaviors. Sci Rep 2015;5:8415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Resende WR, Valvassori SS, Réus GZ, Varela RB, Arent CO, Ribeiro KF, et al. Effects of sodium butyrate in animal models of mania and depression: implications as a new mood stabilizer. Behav Pharmacol 2013;24:569–79.

    Article  CAS  PubMed  Google Scholar 

  97. Jochems J, Boulden J, Lee BG, Blendy JA, Jarpe M, Mazitschek R, et al. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014;39:389–400.

    Article  CAS  PubMed  Google Scholar 

  98. Kim H-J, Bae S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 2011;3:166–79.

    CAS  PubMed  Google Scholar 

  99. Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry 2016;64:320–4.

    Article  CAS  PubMed  Google Scholar 

  100. Karagiannis TC, El-Osta A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 2007;21:61–5.

    Article  CAS  PubMed  Google Scholar 

  101. Duvic M, Dimopoulos M. The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: a review of clinical studies. Cancer Treat Rev 2016;43:58–66.

    Article  CAS  PubMed  Google Scholar 

  102. Ghosh B, Zhao WN, Reis SA, Patnaik D, Fass DM, Tsai LH, et al. Dissecting structure-activity-relationships of crebinostat: brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorg Med Chem Lett 2016;26:1265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chakravarty S, Bhat UA, Reddy RG, Gupta PKA. Histone deacetylase inhibitors and psychiatric disorders. In: Jacob Peedicayil, Dennis R, Grayson DA, editors. Epigenetics in Psychiatry. 1st ed. Academic Press; 2014. p. 516–44.

  104. Iga J, Ueno S, Yamauchi K, Numata S, Kinouchi S, Tayoshi-Shibuya S, et al. Altered HDAC5 and CREB mRNA expressions in the peripheral leukocytes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:628–32.

    Article  CAS  PubMed  Google Scholar 

  105. Stein J, Zores M, Schröder O. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism. Eur J Nutr 2000;39:121–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sowa-Kućma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misztak, P., Pańczyszyn-Trzewik, P. & Sowa-Kućma, M. Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol. Rep 70, 398–408 (2018). https://doi.org/10.1016/j.pharep.2017.08.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.08.001

Keywords

Navigation